• Title/Summary/Keyword: Static Pressure

Search Result 1,378, Processing Time 0.031 seconds

The Prediction of Injection Distances for the Minimization of the Pressure Drop by Empirical Static Model in a Pulse Air Jet Bag Filter (충격기류식 여과집진기에서 경험모델을 이용한 최소압력손실의 분사거리 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Lim, Woo-Taik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.25-34
    • /
    • 2011
  • The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (${\Delta}P_{initial}$) and the dust mass number term($N_{dust}=\frac{{\omega}_0{\nu}_f}{P_{pulse}t}$), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance ($K_d$), one of the empirical static model parameters got the minimum value at d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.

The Gasoline Atomization Characteristics and Static Pressure Distribution of Tapered Nozzle Swirl Spray (경사노즐 선회분사기의 가솔린 미립화 및 분무 내부 압력 분포)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.283-291
    • /
    • 2007
  • The static pressure distribution, atomization characteristics and velocity distribution of tapered nozzle swirl spray is analyzed and then compared with original swirl spray. The static pressure distribution inside the swirl spray is measured using a piezoresistive pressure transducer. Phase Doppler anemometry (PDA) is applied to measure and analyze the droplet size and velocity distribution of tapered nozzle and original swirl spray. The static pressure inside the spray shows the lower value compared to the atmospheric pressure and this pressure drop is getting attenuated as the taper angle is increased. The droplet size of tapered nozzle spray shows similar value compared to the original swirl spray at the horizontal mainstream while it shows increased value at vertical mainstream. The deteriorated atomization characteristics of tapered nozzle spray is improved by applying high fuel temperature injection without causing the spray collapse. The velocity results show that the larger portion of fuel is positioned with higher injection velocity, and the smaller portion of fuel is positioned with lower injection velocity with causing spatially non-uniform mixture distribution.

A Study on the Cost-Effective Personalized Plantar Pressure Measurement System

  • Kang, Ji-Woo;Kwon, Young-Man;Lim, Meoung-Jae;Chung, Dong-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.11-17
    • /
    • 2019
  • Plantar pressure data can be used not only for walking patterns in daily life, but also for eating, health care, and disease prevention. For this reason, the importance of plantar pressure measurement has recently increased. However, most systems that can measure both static and dynamic plantar pressure at the same time are expensive, not portable, and not universal. In this study, we propose a system that effectively reduces the number of sensors in plantar pressure system. Through this, we want to increase the economics and practicality by reducing the size and weight of the system, as well as the power consumption. First, for static plantar pressure and dynamic plantar pressure, the values measured by existing precision instruments are analyzed to determine how many measurement parts the insole is divided into. Next, for the divided measuring parts, the position of the sensor is determined by calculating the Center of Pressure (COP) for each part with the values of all dynamic and static plantar pressure sensors. Finally, in order to construct a personalized plantar pressure measurement system, we propose a weighting method for the static plantar pressure COP and the dynamic plantar pressure COP for each part.

An Analysis of the Static and Dynamic Characteristics of Infinite Width Tilting-Pad Journal Bearings in Consideration of Ram-Prssure (선단압력을 고려한 무한폭 틸팅-패드 저어널 베어링의 정특성 및 동특성 해석)

  • 김종수;김경웅
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.68-76
    • /
    • 1989
  • In this paper, the influence of ram-pressure on the static and dynamic characteristics of infinite width tilting-pad journal bearing is investigated theoretically. The ram-pressure is obtained by assumption of conservation of mechanical energy of the lubricant flow through the leading edge of the pad. The pressure in the lubricating film is numerically calculated using the ram-pressure obtained as the inlet pressure boundary condition of the pad. The static equilibrium state of tilting-pad journal bearing is determined by Newton-Raphson iteration method. A numerical results are presented in graphic form and relationships between the ram-pressure and the static and dynamic characteristics are discussed.

Retaining Wall System Using the Compressible Inclusion Function of EPS (EPS의 압축성을 이용한 콘크리트 옹벽 시스템 연구)

  • 김진만;김호비;조삼덕;주태성;최봉혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.411-418
    • /
    • 2001
  • The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. This paper analyzes the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests was conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS, Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure was reduced about 20% compared with theoretical active earth pressure.

  • PDF

A Study of Static Pressure Differential Measurement of Nozzle for Miniaturization of a Air Flow Meter (풍량 측정 장치 소형화를 위한 노즐 정압차 측정 연구)

  • Oh, Sang-Teak;Kim, Young Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.414-419
    • /
    • 2016
  • Air flow measurement is a fundamental and important task for testing, adjusting, and balancing of HVAC system. However, it is difficult to carry out in the field due to the large size and weight of the flow meter. In this study, for the purpose of developing a small and portable flow meter, we proposed a different method of static pressure measurement and verified it experimentally. In the proposed method, static pressure difference was measured by inserting a tube inside the chamber before and after the nozzles. The results were compared with measurements according to the ANSI/ASHRAE standard. The results were in good agreement, indicating that the inserted tube method could be used for static pressure measurement of a portable flow meter. The proposed method eliminates the pressure tubes that are attached outside, which results in smaller size and easy handling.

Pressure Loss and Heat Transfer Characteristics of Heat Exchanger Using Static Mixing Technology (정적혼합기술 응용 열교환기의 압력손실 및 열전달 특성)

  • Park Sang-Kyoo;Yang Hei-Cheon;Jeon Jun-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 2006
  • Heat transfer augmentation in heat exchangers has received much attention in recent years, mainly due to energy efficiency and environmental considerations. Many active and Passive techniques are currently being employed in heat exchangers, with some inserts providing a cost-effective and efficient means of augmenting heat transfer. The Purpose of this paper is to determine the pressure loss and heat transfer characteristics of a heat exchanger using static mixing technology. Experimental measurements were taken on two set-ups: a single tube heat exchanger and a shell-tube heat exchanger with two static mixing inserts. It was concluded that the static mixing inserts resulted in an increase in the pressure loss and heat transfer characteristics as can be expected.

Large Eddy Simulation on the Drag and Static Pressure Acting on the Blade Surface of Three-Dimensional Small-Size Axial Fan with Different Operating Loads (운전부하에 따른 3차원 소형축류홴 날개표면에 작용하는 정압과 항력에 대한 대규모와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2017
  • The large-eddy simulation(LES) was carried out to evaluate the drag and static pressure acting on the blade surface of a small-size axial fan(SSAF) under the condition of unsteady-state, incompressible fluid and three-dimensional coordination. The axial component of drag coefficient increases with the increase of operating load, but the radial components have negligible sizes regardless of operating loads. Otherwise, the static pressures acting on the blade surfaces of SSAF show different distributions around the operating point of D equivalent to the stall. Also, with the increase of operating load, the static pressures acting on the pressure and suction surfaces of blade concentrate at the tips and leading-edges as a whole.

Performance of an Axial Turbo Fan by the Revision of Impeller Pitch Angle (피치각 수정에 따른 축류식 터보팬 성능 변화에 관한 연구)

  • Kang Seok-Youn;Lee Tae-Gu;Ryu In-Keun;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.268-276
    • /
    • 2005
  • The aim of this paper is to suggest one efficient method for the various requirements of performance during the process designing and producing an impeller. The study considers that the revisions of a pitch angle of an impeller at an axial turbo fan affect an air flow rates and a static pressure rise. The axial turbo fan specified with the 250 Pa maximum static pressure and 1300 CMH fan air flow rates was tested and analyzed by CFD. The Numerical results show that the air flow rates are calculated to 1,175 CMH, 1,223 CMH, 1,270 CMH, 1,340 CMH and 800 CMH in cases that the pitch angles are $44^{\circ},\;49^{\circ},\;54^{\circ},\;59^{\circ},\;and\;64^{\circ}$ respectively. Also the static pressure rises are shown to 108 Pa, 122Pa, 141 Pa, 188 Pa and 63 Pa at the same cases. The air flow rate is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;59^{\circ}$ and the maximum air flow rate passing the impeller is increased to $13\%$ over at the case of $59^{\circ}$ pitch angle compared with the reference case of $54^{\circ}$ pitch angle. The static pressure rise is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;54^{\circ}$, too. The static pressure rise at the $59^{\circ}$ pitch angle is increased to $33\%$ over compared with the $54^{\circ}$ pitch angle. The result shows that the revisions of pitch angle make the static pressure rise increase widely. However the air flow rates and the static pressure rise at the $64^{\circ}$ pitch angle are suddenly decreased because of over-changed pitch angle.

Investigation of Pressure Loss in Bent Duct (Bent Duct 내부 유동의 손실 측정)

  • Roh, U-Jin;Im, Ju-Hyun;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.295-298
    • /
    • 2009
  • Bent ducts add loss and decrease efficiency. Many researchers have been conducted the performances of bent ducts, but their shapes of inlet and outlet are same. However, in this investigation, the focus is on a bent duct which is annular at the inlet and circular at the outlet. The bent duct of these complex shapes has not been investigated, but has been used in many fields. The performance of such bent duct is investigated under inlet speed 54 m/s and Re = 238,000. Wall static pressure tappings are located surface of the bent duct to measure the static pressure and a probe is traversed at the inlet and outlet of the bent duct to measure the total pressure. As a result, it presents static pressure distribution on the bent duct surface, streamwise velocity profile at inlet and outlet of the bent duct and total pressure loss profile at outlet. In this investigation, the total pressure loss coefficient is 0.243.

  • PDF