• 제목/요약/키워드: Static Load

검색결과 2,575건 처리시간 0.025초

강섬유 보강 철근콘크리트 전단이음부의 피로거동에 대한 실험적 연구 (A Experimental Study on Fatigue Behavior of Joints between RC and RSFC subjected to shear)

  • 강보순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.389-396
    • /
    • 2000
  • Fatigue behavior of shear joints between combined reinforced concrete(RC) and reinforced steel fiber concrete(RSFC) specimens has been experimentally investigated. Experimental parameters used are the amount of steel fiber and the type of shear joint. 6 specimens have been tested under static load, and 8 specimens have been subjected to the fatigue load in a range of 50% and 5 % of the ultimate static load. The purpose of this research is to propose an empirical formula for fatigue shear behavior of combined RC and RSFC structures on the basic of experimental result. It can be observed from experimental result that addition of steel fibers to concrete specimen increases the static ultimate load by approximately 25%, enhances the fatigue behavior, and also reduces vertical and lateral displacements at the shear joint for a given load cycle after the occurrence of first crack.

  • PDF

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

철도하중에 대한 철근 콘크리트와 강섬유 보강 철근 콘크리트 전단이음부의 피로거동에 관한 실험적 연구 (Study on the Fatigue Behavior of a Joint between RC and SFRC Subjected to Shear)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.194-202
    • /
    • 2000
  • Fatigue behavior of shear joints between the combined reinforced concrete(RC) and the reinforced steel fiber concrete(SFRC) specimens has been experimentally investigated. Experimental parameters used are the amount of steel fiber and the type of shear joint. Six specimens have been tested under static load, and eight specimens have been subjected to the fatigue load in a range of 50 % and 5 % of the ultimate static load. The purpose of this research is to propose an empirical formula for fatigue shear behavior of the combined RC and SFRC structures on the basis of experimental result. It can be observed from experimental results that addition of steel fibers to concrete specimen increases the static ultimate load by approximately 25 %, enhances the fatigue behavior, and also reduces vertical and lateral displacements at the shear joint for a given load cycle after the occurrence of first crack.

  • PDF

경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구 (Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House)

  • 김광모;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • 제7권6호
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석 (A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE)

  • 정창모;이호용
    • 대한치과보철학회지
    • /
    • 제30권4호
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

동적재하시험을 통한 PSC 거더교의 횡분배 측정 (Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test)

  • 김성완;정진환;김성도;박재봉;이명진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권3호
    • /
    • pp.60-68
    • /
    • 2017
  • 교량은 사회간접시설물의 핵심이 되는 도로의 주요 시설물이므로 공용기간 동안 안정성과 사용성이 확보될 수 있도록 건설되며, 교량의 안전성 확보를 위하여 현재 상태에서 건전성을 평가하는 것은 유지관리 업무에서 중요한 과제이다. 일반적으로 교량의 내하력 평가를 위해 차량재하시험을 통하여 횡분배율을 측정함으로써 교량의 중첩거동 및 대칭거동을 확인할 수 있다. 그러나 공용중인 교량의 횡분배율을 측정하기 위하여 정적재하시험을 수행하고 있으며 교통통제의 어려움이 있다. 따라서 본 연구에서는 동적재하시험 및 상시진동시험에서 측정된 교량의 변위응답 데이터를 경험적 모드분해기법을 이용하여 정적 성분의 변위를 추출하였다. 추출된 정적 성분의 변위를 이용하여 횡분배율을 추정하였으며, 정적재하시험에서 측정된 횡분배율과 비교하였다.

Experimental investigation on bolted rock mass under static-dynamic coupled loading

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Shi, Xinshuai;Hu, Shanchao
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.99-111
    • /
    • 2022
  • Instability of bolted rock mass has been a major hazard in the underground coal mining industry for decades. Developing effective support guidelines requires understanding of complex bolted rock mass failure mechanisms. In this study, the dynamic failure behavior, mechanical behavior, and energy evolution of a laboratory-scale bolted specimens is studied by conducting laboratory static-dynamic coupled loading tests. The results showed that: (1) Under static-dynamic coupled loading, the stress-strain curve of the bolted rock mass has a significant impact velocity (strain rate) correlation, and the stress-strain curve shows rebound characteristics after the peak; (2) There is a critical strain rate in a rock mass under static-dynamic coupled loading, and it decreases exponentially with increasing pre-static load level. Bolting can significantly improve the critical strain rate of a rock mass; (3) Compared with a no-bolt rock mass, the dissipation energy ratio of the bolted rock mass decreases exponentially with increasing pre-static load level, the ultimate dynamic impact energy and dissipation energy of the bolted rock mass increase significantly, and the increasing index of the ratio of dissipation energy increases linearly with the pre-static load; (4) Based on laboratory testing and on-site microseismic and stress monitoring, a design method is proposed for a roadway bolt support against dynamic load disturbance, which provides guidance for the design of deep underground roadway anchorage supports. The research results provide new ideas for explaining the failure behavior of anchorage supports and adopting reasonable design and construction practices.

도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가 (Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test)

  • 서승일;박춘수;신병천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF