• 제목/요약/키워드: Static Flow Characteristics

검색결과 370건 처리시간 0.025초

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석 (Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

리어가이더 형상변화에 따른 횡류홴 성능해석 (Analysis of Performance of Cross-Flow Fan with Various Rear Guiders)

  • 김동원;이준환;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2076-2082
    • /
    • 2003
  • A cross-flow fan is widely used on many industrial fields: mining industry, automobile and home appliances, etc. The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between 30% and 40% because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the lower flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow field against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for investigating the flow characteristics in a cross-flow fan including the impeller, the rearguider and the stabilizer. Especially, various types of rearguiders are estimated by numerical and experimental methods to insure the stable operation in the region of lower flow rate. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard ${\kappa}-{\varepsilon}$ turbulence model. ASHRAE standard fan tester is also used to estimate the performance of the modeled crossflow fan.

  • PDF

Supersonic Moist Air Flow with Condensation in a Wavy Wall Channel

  • Ahn, Hyung-Joon;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.492-499
    • /
    • 2001
  • The characteristics of Prand시-Meyer expansion of supersonic flow with condensation along a wavy wall in a channel are investigated by means of experiments and numerical analyses. Experiments are carried out for the case of moist air flow in an intermittent indraft supersonic wind tunnel. The flow fields are visualized by a Schlieren system and the distributions of static pressure along the upper wavy wall are measured by a scanning valve system with pressure transducers. In numerical analyses, the distributions of streamlines, Mach lines, iso-pressure lines, and iso-mass fractions of liquid are obtained by the two-dimensional direct marching method of characteristics. The effects of stagnation temperature, absolute humidity, and attack angle of the upper wavy wall on the generation and the locations of generation and reflection of an oblique shock wave are clarified. Futhermore, it is confirmed that the wavy wall plays an important role in the generation of an oblique shock wave and that the effect of condensation on the flow fields is apparent.

  • PDF

유로내에서 응축을 수반하는 초음속 유동의 미소진폭 파형벽에 의한 Prandtl-Meyer 팽창 (Prandtl-Meyer Expansion Through a Small Wavy Wall of Supersonic Flow with Condensation in a Channel)

  • 권순범;안형준;선우은
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1582-1589
    • /
    • 1994
  • The characteristics Prandt1-Meyer expansion of supersonic flow with condensation through a wavy wall in a channel are investigated by experiment and numerical direct marching method of characteristics. In the present study, for the case of moist air flow in the type of indraft supersonic wind tunnel, the dependency of location of formation and reflection of the oblique shock wave generated by the wavy wall and the distribution of flow properties, on the specific humidity and temperature at the entrance of wavy wall and the attack angle of the wavy wall to the main stream is clarified by schlieren photograph, distribution of static pressure and Mach number, and plots of numerical results. Also, we confirm that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

이중원관 구속제트의 유동특성에 관한 연구 (A Study on Flow Characteristics of Confined Circular Jet within Pipe)

  • 서민식;최장운;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

축류회전차에서 팁간극의 변화를 고려한 유동특성에 관한 연구 (A Study on the Flow Characteristics in Axial Flow Rotors with Varying Tip Clearance)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.353-361
    • /
    • 2002
  • The tip leakage flow passing through the clearance between rotor blade tip and casing shroud has been known to occupy an important portion of the rotor overall loss. In this study, flow characteristics in axial flow rotors with different tip clearances is investigated by experimental and numerical methods. The experimental study was carried out to measure static pressure and velocity profiles at the real rotating test rig. The axial flow rotors used for the experiments have ten blades and three different rotor diameter. The tip clearance heights are 1mm, 3mm, and 4.5mm. Measurements were done using spherical type five-hole probe by non-nulling method. The numerical study was carried out to calculate pressure distributions and velocity vectors at the same condition as the experiments in the flow fields of axial flow rotors using Phoenics code.

유체력을 이용한 직동식 비례 유량 조절 밸브에 관한 연구 (A Study on a Direct-Type Proportional Flow Control Valve Utilizing Flowforces)

  • 배상기;현장환;이정오
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.68-75
    • /
    • 1998
  • A one-stage direction and flow control valve was studied theoretically and experimentally. A direction and flow control valve maintains a constant flow rate by changing the spool-orifice area under the variation of valve pressure drop, since the spool-orifice area is varied by the action of flowforces on the spool. A direction and flow control valve has the advantage of simple and low-cost structure compared to a conventional flow control valve utilizing a pressure regulating spool which regulates the pressure drop caused by flow through the metering orifice. The static and dynamic characteristics of a one-stage direction and flow control valve was analyzed. Experimental results on the flow control characteristics of the manufactured valve show satisfactory agreement with simulation results.

  • PDF

전기유압식 스프링복귀 액추에이터 정특성 (Static Characteristics of Electro-Hydraulic Spring Return Actuator)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권2호
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

터보펌프 인듀서의 유동특성에 관한 연구 (A Study on the Flow Characteristics of a Turbopump Inducer)

  • 구현철;홍순삼;차봉준;양수석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.41-46
    • /
    • 2002
  • Flow field downstream of an inducer was measured to see the flow and performance characteristics of a turbopump inducer. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow - without interaction of the inducer and the volute. A conventional 3-hole probe was used to measure the flow. At inducer exit axial component of absolute velocity decreased on hub region with decrease in flow rate. Tangential velocity component static pressure, and total pressure increased from hub to tip. Relative flow angle from tangential direction was a little higher than outlet blade angle at flow coefficient $\varphi$=0.087 and 0.073. Dynamic pressure was $53\%$ of the mean total pressure at inducer exit at $\varphi$=0.073.

  • PDF