• Title/Summary/Keyword: Static Effects

Search Result 1,822, Processing Time 0.027 seconds

Effects of Static and Dynamic Stretching on Lumbar Lordotic Angle and Low Back Pain in University Students

  • Ga, Heayoung;Gim, Mina
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.3
    • /
    • pp.1834-1839
    • /
    • 2019
  • Background: Lumbar lordosis is a result of muscle shortening and may cause low back pain. Objective: To examine the effects of static and dynamic stretching on lumbar lordosis and low back pain in university students. Stretching is an intervention that can be applied to shortened muscles; however, very few studies have compared the effects of static and dynamic stretching on lumbar lordosis and low back pain. Design: Randomized controlled clinical trial (single-blind) Methods: The 12 selected subjects were randomly assigned static stretching and dynamic stretching groups each containing six students. The subjects in each group performed their respective stretching programs for 17 minutes, 3 times a week for 4 weeks. Lumbar lordotic angle, low back pain, and Oswestry Disability Index (ODI) were measured before and after the intervention. Results: Intragroup comparisons showed significant reductions in lumbar lordotic angle and low back pain in the static stretching group while the dynamic stretching group showed significant decreases in lumbar lordotic angle, low back pain, and ODI. The intergroup comparisons showed significantly greater differences between pre- and post-intervention in lumbar lordotic angle and low back pain in the dynamic stretching group compared to those in the static stretching group while ODI did not show any intergroup difference. Conclusions: The results of this study indicated that, while both static and dynamic stretching helped to reduce the lumbar lordotic angle and low back pain, dynamic stretching was more effective in alleviating lumbar lordotic angle and low back pain compared to static stretching.

Application of computer algorithms for modelling and numerical solution of dynamic bending

  • Jianzhong, Qiu;Naichang, Dai;Akbar Shafiei, Alavijeh
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.143-152
    • /
    • 2023
  • In this paper, static and dynamic bending of nanocomposite micro beam armed with CNTs considering agglomeration effect is studied. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The micro beam is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the static and dynamic deflections are decreased. In addition, enhancing the nonlocal parameter yields to higher static and dynamic deflections.

The Acute Effects of 15 Minutes Plantarflexor Static Stretch in Quite Stance (15분간의 저측굴곡근 정적 스트레칭이 기립 균형에 미치는 단기 효과)

  • Yuk, Goon-Chang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.191-197
    • /
    • 2012
  • Purpose : The purpose of this study was to examine immediate effects of 15 minutes plantarflexor static stretching in quite stance. Methods : Twenty-nine subjects were measured static balance during 1 minute in quite stance with eye closed condition before and after 15 minutes plantarflexor static stretching. Static stretching range was limited from $15^{\circ}$ to $20^{\circ}$ dorsiflexion within comfortable range. Results : The result of this study showed that postural sway significantly increased during 1 minute quiet stance after 15 minutes static stretching(p<.05). Before stretching, postural sway significantly decreased during 41-60 seconds compared to 0-20, 21-40 seconds(p<.05). After stretching, postural sway was decreased significantly over time 0-20, 21-40, and 41-60 seconds(p<.05). Conclusion : The prolong plantarflexor static stretching may require biomechanical, neurological adaptations prior to walking or sport activities for safety.

Static and dynamic bending of ball reinforced by CNTs considering agglomeration effect

  • Chenghong Long;Dan Wang;H.B. Xiang
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.419-428
    • /
    • 2023
  • In this paper, dynamic and static bending of ball modelled by nanocomposite microbeam by nanoparticles seeing agglomeration is presented. The structural damping is considered by Kelvin-Voigt model. The agglomeration effects are assumed using Mori-Tanaka model. The football ball is modeled by third order shear deformation theory (TSDT). The motion equations are derived by principle of Hamilton's and energy method assuming size effects on the basis of Eringen theory. Using differential quadrature method (DQM) and Newmark method, the static and dynamic deflections of the structure are obtained. The effects of agglomeration and CNTs volume percent, damping of structure, nonlocal parameter, length and thickness of micro-beam are presented on the static and dynamic deflections of the nanocomposite structure. Results show that with increasing CNTs volume percent, the maximum dimensionless dynamic deflection is reduced about 17%. In addition, assuming CNTs agglomeration increases the dimensionless dynamic deflection about 14%. It is also found that with increasing the CNTs volume percent from 0 to 0.15, the static deflection is decreased about 3 times due to the enhance in the stiffness of the structure. In addition, with enhancing the nonlocal parameters, the dynamic deflection is increased about 3.1 times.

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

Effects of 3D Stabilization Exercise on the Muscle Activity and Static Balance of Patients with Lumbar Instability

  • Kang, Jeong-Il;Choi, Hyun-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2017
  • Purpose: The paper presents an intervention for clinical applications in the future by examining the effects of 3D stabilization exercise on patients with lumbar instability, which causes problems in the muscles and balance, and analyzing the effects of balanced lumbar muscles on the static balance. Methods: After collecting samples randomly from thirty patients with lumbar instability, fifteen patients selected for 3D stabilization exercise were placed in the stability group and fifteen patients selected for Swiss ball exercise were placed in the ball exercise group. The intervention program was applied for thirty minutes a session, once a day, three days a week for four weeks. Before the intervention, the lumbar muscle activity and static balance were measured. After four weeks, they were re-measured in the same way and the data were analyzed. Results: In relation to the within-group changes in muscle activity, all groups except for the LEO and REO groups showed significant differences. Regarding the between-group changes in muscle activity depending on the left and right difference, ES, RA, and TrA but not EO showed significant differences. In addition, there were significant differences in the between-group change in static balance. Conclusion: 3D stabilization exercise improves the muscle activity by promoting a balanced posture of lumbar muscles and changing senses, such as a proprioceptor but this had a positive influence on the static balance by controlling the balance of muscles.

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

A Study on the Oxygen Saturation Level Changes in the Blood Exposed to the Static Magnetic Field (자속에 노출된 인체의 혈중 산소 포화농도의 변화에 관한 연구)

  • Jung, Yong-Chul;Lee, Dong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.87-90
    • /
    • 2007
  • The effects of static magnetic field on the human biological system are becoming increasingly more important with the adaption of static magnet in the medical community. It is the goal of this paper to review the effects of static magnetic fields on oxygen saturation level in blood. The results of this paper show that the oxygen saturation level increased in the blood in index finger when the static magnetic dipole was fitted on index finger.

Static Stability Analysis for Gait Control of a Quardruped Walking Robot (사각보행로보트의 걸음새 제어를 위한 정적 안정도 해석)

  • 임준홍;서일홍;임미섭
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.1014-1021
    • /
    • 1989
  • The problem of controlling static gaits for a quadruped walking robot is investigated. A theoretical approach to gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects fo the stride length on static stability are analyzed and the relations between static stability and initial body configurations are examined. It is shown that the moving velocity can be increased to some extent without affecting stability margins for a given initial body configuration. Computer simulations are performed to verify the analysis.

  • PDF

Advanced Features of Static Inverter and Their Influence on Rail Infrastructure and Vehicle Maintenance

  • Bachmann, G.;Wimmer, D.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.94-98
    • /
    • 2008
  • Static inverters are essential devices onboard of rolling stock. State-of-the-art static inverters have an impact on both rail infrastructure and vehicle maintenance due to their new topology with new features. The paper describes two important aspects as examples of new features available in state-of-the-art static inverters: active input current control and the effects on the rail infrastructure as well as the detection of the state of charge and the state of health of batteries to simplify vehicle maintenance.

  • PDF