• 제목/요약/키워드: Static Eccentricity

검색결과 64건 처리시간 0.028초

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증 (Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings)

  • 이광호;정성훈
    • 한국지진공학회논문집
    • /
    • 제14권6호
    • /
    • pp.67-74
    • /
    • 2010
  • 건물의 실제 편심은 일반적으로 계산된 값과 상당히 다르며, 정형 건물도 비틀림의 영향을 받는다. 질량분포의 비대칭성과 수직축에 대한 지반의 회전요소와 같은 요인들의 영향을 고려하고, 비틀림 비정형 건물의 취약성을 줄이기 위하여 내진설계규준에서는 우발편심과 비틀림 증폭계수를 도입하였다. 본 연구에서는 정형건물의 다양한 형상비와 평면중심으로부터의 부재위치에 따른 비틀림 증폭계수의 영향 및 이 계수에 영향을 미치는 요인을 확인하였고 보통암 지반에 위치한 다양한 편심과 형상비를 갖는 비선형 철근콘크리트 단층모델을 이용하여 비틀림 증폭계수를 검증하였다. 비선형 정적해석과 시간이력해석을 이용하여 구한 연약단부의 최대 정적변위와 동적변위는 비교적 일치하였으나 최대 정적비틀림과 동적비틀림의 차이는 편심크기가 작을수록 크게 나타났다. 1차 설계편심에 비틀림 증폭계수 적용유.무에 따라 연약단부 부재의 밑면전단력 증가가 미비하여 최대 정적변위의 증가비가 크지 않다.

볼 소켓형 피봇을 갖는 틸팅 패드 저널 베어링의 성능 예측 및 기존 결과와의 비교 (Performance Predictions of Tilting Pad Journal Bearing with Ball-Socket Pivots and Comparison to Published Test Results)

  • 김태호;최태규
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.63-68
    • /
    • 2017
  • This paper predicts the rotordynamic force coefficients of tilting pad journal bearings (TPJBs) with ball-socket pivot and compares the predictions to the published test data obtained under load-between-pad (LBP) configuration. The present TPJB model considers the pivot stiffness calculated based on the Hertzian contact stress theory. Due to the compliance of the pivot, the predicted journal eccentricity agree well with the measured journal center trajectory for increasing static loads, while the early prediction without pivot model consideration underestimates it largely. The predicted pressure profile shows the significant pressure development even on the unloaded pads along the direction opposite to the loading direction. The predicted stiffness coefficients increase as the static load and the rotor speed increase. They agree excellently with test data from open literature. The predicted damping coefficients increase as the static load increases and the rotor speed decreases. The prediction underestimates the test data slightly. In general, the current predictive model including the pivot stiffness improves the accuracy of the rotordynamic performance predictions when compared to the previously published predictions.

범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석 (Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps)

  • 김태호;문형욱
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

초소형 점성 펌프의 Wavier-Stokes 해석 (NAVIER-STOKES SIMULATION OF A MICRO-VISCOUS PUMP)

  • 강동진
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.75-80
    • /
    • 2006
  • Navier-Stokes simulation of the flow in a micro viscous pump is carried out. The micro viscous pump consists of a rotating circular rotor placed in a two dimensional channel. All simulation is carried out by using a finite volume approach, at the Reynolds number of 0.5, to study the performance of the micro viscous pump. Length of channel of the pump is varied to simulate the effects of the pumping load. Numerical solutions show that the net flow of the pump is realized by two counter rotating vortices formed on both sides of the rotor. The volume flow rate of the pump is decreased as length of the channel is increased, while the static pressure difference across the rotor is increased. The static pressure difference across the rotor is observed to be inversely proportional to the volume flow rate as inertia effects are negligibly small. The efficiency of the pump is found to reach a maximum when two counter rotating vortices on both sides of the rotor becomes to merge forming an outer enveloping vortex.

이중코어를 가진 경사진 형상 구조물의 코어 배치에 따른 역학적 거동 분석 (Analysis of the Static Behavior of Tilted Structure with Dual-Core by Core Location)

  • 김민석;이다혜;강주원
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.71-78
    • /
    • 2023
  • Recently, Free-Form and Irregular Shape high-rise buildings are constructed by IT technology development. Tilted shaped high-rise building which is one of Irregular shape high-rise buildings can cause lateral displacement by gravity load and lateral load due to tilted elevation shape. Therefore, it is necessary to review the behavior and structural aspects of the Tilted shape high-rise building by gravity load. In this paper, the dynamic characteristics of a tilted structure with a dual-core were analyzed with the core location as a design variable, and response behavior, vulnerable members, and vulnerable layers to earthquake loads were analyzed. As a result of the analysis, as the location of the core moved in an tilted direction, the eccentric distance and eccentric load decreased, reducing the axial force of the vertical members. However, the location of the core had little effect on the response.

공기윤활 웨이브 저어널 베어링의 부하 특성에 관한 연구 (A Study on the Load Characteristics of Air-Lublicated Hydrodynamic Wave Journal Bearing)

  • 조성욱;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.156-161
    • /
    • 1999
  • new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performances of an air-lubricated hydrodynamic journal bearing. This concept features waves on bearing surface. In this study, we present the solution of the compressible Reynolds equation valid for arbitrary Knudsen numbers. Straight wave journal bearing is investigated numerically. The performances of straight wave bearing are compared to the plain journal bearing over relatively wide range of bearing number and eccentricity. The wave journal bearing offers better stability than the plain journal bearing under a13 bearing numbers covered in this study. The bearing load and stability characteristics are dependent on the geometric parameters such as the amplitude and the starting point of the wave relative to the applied load. Under the condition of Knudsen number)0.01, we can not ignore the effect of slip for journal bearing.

  • PDF

유도전동기 고장모의 시뮬레이터 개발 (Development of Fault-Simulated System for Induction Motors)

  • 황돈하;이기창;강동식;김병국;조원영;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.182-184
    • /
    • 2006
  • A down-scaled simulator is developed to simulate typical faults in induction motor such as short-turn stator winding, broken rotor bar, dynamic and static air-gap eccentricity, bearing trouble, and mechanical unbalance. The simulator is used as an initial builder to develop design algorithm for real-time faults detecting system by processing an abnormal signal and characteristics in each fault.

  • PDF

오일윤활 빗살무늬 저널 베어링에 대한 정특성 및 안정성 해석 (A study on the static and stability characteristics of the oil-lubricated herringbone groove journal bearing)

  • 강경필;임윤철
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.859-867
    • /
    • 1998
  • An oil lubricated Herringbone aroove jounal bearing(HGJB) with eight-circular-profile grooves on the non-rotating bearing surface is analyzed numerically and experimentally. The load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for the various bearing configurations. The onset speed of instability is also examined for the various eccentricity ratios. The configuration parameters of HGJB, such as groove depth ratio, groove width ratio, and groove angle, are dependent on each other because the grooves are generated by using eight small balls rolling over the inner surface of the sleeve with press fit. Therefore, it is not allowed to suggest a set of optimal design parameters such as the one for the rectangular profile HGJB. The overall results from numerical and experimental analysis prove that the circular profile HGJB has an excellent stability characteristics and the higher load carrying capacity than the plain journal bearing.

공기 포일 베어링으로 지지되는 무급유 터보 과급기 회전체 설계에 대한 연구 (Study on the Oil-free Turbocharger Supported by Air Foil Bearing)

  • 이용복;김태호;김창호;이남수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.453-458
    • /
    • 2002
  • The feasibility study on supporting a turbocharger rotor on air foil bearing is investigated. Based on finite difference method and Newton-Raphson method, the static equilibrium position of a turbocharger rotor is predicted. And using finite difference method and perturbation method, dynamic characteristics of air foil bearings are calculated. Rotordynamic analysis is performed by finite element method, with collaboration of calculated stiffness and damping of foil bearing. The effect of compliance and clearance of bump foil bearing on the oil-free turbocharger is investigated in terms of rotordynamics. And the critical speeds, eccentricity ratio, vibration amplitude, and stability are considered. It is demonstrated that foil bearings offer a rlausible replacement for oil-lubricated bearings in turbocharger.

  • PDF