• 제목/요약/키워드: Static/dynamic load

Search Result 912, Processing Time 0.035 seconds

A Comparative Study on Bearing Capacity of Single Pile Based on Calculation Method (산정방법에 따른 단말뚝의 지지력 비교연구)

  • 이영대;심재현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.124-133
    • /
    • 1997
  • Pile load test is good for estimating pile bearing capacity, but using this method is limited by time and cost required. Dynamic and static method is more convenient and economical, but confidence of estimated value by dynamic and static method are lower than that of pile load test. After being compared pile bearing capacity data obtained from pile load test with those of other two methods, the results from this study were summarised as follows. For allowable bearing capacity values greater than 175t per pile, bearing capacity acquired from static method was higher than that acquired from pile load test, whereas bearing capacity acquired from pile load test was higher than that acquired from static method for values under 175 per pile. It was that variance of bearing capacity was large when bearing capacity obtained by dynamic method was higher than 250t. Also bearing capacity based on dynamic method was higher than that based on pile load test. Allowable bearing capacity get from dynamic method suggested that carefull precautions are necessary in application for allowable bearing capacity values higher than 2S0ton per pile.

  • PDF

A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile (PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구)

  • Park, Jongbae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.19-31
    • /
    • 2017
  • In case of USA, the drilled shaft and the driven pile in the field showed a good correlation in the analysis of the bearing capacity between the dynamic load test and the static load test. However, in Korea, we mainly install the bored pile, which is not widely used overseas and we tried to confirm the reliability of the dynamic load test on the bored pile, because many people questioned the reliability of it. In this study, load tests were carried out on PHC bored piles in LH field (Cheonan, Incheon, Uijeongbu), and the bearing capacity of the dynamic load test (EOID 7times, Restrike 7times) and the static load test (7times) were compared and analyzed. As a result, the average of the bearing capacity of the static load test was 27% higher than that of the dynamic load test (reliability : 0.73, coefficient of variation : 0.3). And the average of the bearing capacity of the static load test (Davisson) was 27% higher than that of the bearing capacity of the dynamic load test (Davisson) (reliability : 0.73, coefficient of variation : 0.2). To reduce the difference between the bearing capacity of the dynamic load test and the static load test, we proposed modified bearing capacity of dynamic load test (base bearing capacity of EOID + skin frictional force of restrike) and difference between the bearing capacities was reduced to 9% (reliability : 0.91, coefficient of variation : 0.2). And the coefficient of variation was reduced to 0.2 and the consistency of analysis increased.

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

Study on the Structural Optimization based on Equivalent Static Load under Dynamic Load (동하중을 받는 구조물의 등가정하중 기반 구조 최적화 연구)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.421-427
    • /
    • 2014
  • Most of the structure of the real world is influenced under dynamic loads. However, when structure analysis and the structural optimization is performed, it is assumed that the static load acts on structure. When considering the actual load of dynamic loads in order to take into account a variety of loads, computational resources and time becomes a big burden in terms of cost. However, considering only the simple static load condition is not preferable for structural safety. For this reason, a lot of studies have been conducted trying to compensate this trouble by applying weight factor or replacing dynamic load with the equivalent static load. In this study, structural optimization techniques for structures under dynamic loads is proposed by applying the equivalent static load. From previous study, after determining the positions of equivalent static load based on primary degrees of freedom, the equivalent static load is calculated through the optimization process. In this process, the equivalent static load optimization of previous research is complemented by adding constraints to avoid excessively large load extraction. In numerical examples, dynamic load is applied to the truss structure and the plate. Then, the reliability of the proposed optimization technique is verified by carrying out size optimization with the equivalent static load.

Analysis of Bearing Capacity and Safety Factor of Dynamic Load Test of Prebored and Precast Steel Pile (현장재하시험을 통한 강관 매입말뚝의 지지력 안전율 제안)

  • Park, Jong-Jeon;Jeong, Sang-Seom;Park, Jeong-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the static and dynamic load tests were carried out to propose the safety factor of steel prebored and precast piles in weathered rocks. The axial load tests have been conducted on test piles with nominal diameters of 0.508 and 0.457 m. The piles were subject to static loading tests (14 times) and dynamic loading tests (EOID 14times, Restrike 14times). The dynamic loading tests were first executed after the casting of test piles ((1) initial EOID test). (2)In the succeding 28 days from completion of construction, static load tests were performed and (3)final restrike tests were carried out after 15 days from the static test. As a result, the bearing capacity based on Davisson method was 15% higher than that of the restrike tests. The bearing capacity of the static load tests were larger than that of the dynamic tests. By comparing the safety factor through various loading tests, the safety factor of dynamic loading tests were suggested to be lowered to 1.75 from the conventional 2.0.

Experimental investigation on bolted rock mass under static-dynamic coupled loading

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Shi, Xinshuai;Hu, Shanchao
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • Instability of bolted rock mass has been a major hazard in the underground coal mining industry for decades. Developing effective support guidelines requires understanding of complex bolted rock mass failure mechanisms. In this study, the dynamic failure behavior, mechanical behavior, and energy evolution of a laboratory-scale bolted specimens is studied by conducting laboratory static-dynamic coupled loading tests. The results showed that: (1) Under static-dynamic coupled loading, the stress-strain curve of the bolted rock mass has a significant impact velocity (strain rate) correlation, and the stress-strain curve shows rebound characteristics after the peak; (2) There is a critical strain rate in a rock mass under static-dynamic coupled loading, and it decreases exponentially with increasing pre-static load level. Bolting can significantly improve the critical strain rate of a rock mass; (3) Compared with a no-bolt rock mass, the dissipation energy ratio of the bolted rock mass decreases exponentially with increasing pre-static load level, the ultimate dynamic impact energy and dissipation energy of the bolted rock mass increase significantly, and the increasing index of the ratio of dissipation energy increases linearly with the pre-static load; (4) Based on laboratory testing and on-site microseismic and stress monitoring, a design method is proposed for a roadway bolt support against dynamic load disturbance, which provides guidance for the design of deep underground roadway anchorage supports. The research results provide new ideas for explaining the failure behavior of anchorage supports and adopting reasonable design and construction practices.

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

Static load test and dynamic characteristics analysis of bogie and body structures of an oil tank (유조화차의 대차 및 구조체 하중시험과 동특성 해석 연구)

  • 홍재성;함영삼;백영남;오택열;김길동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.780-783
    • /
    • 2003
  • In this study, As The Tae Yang Metal company manufactured oil tank inserts welding structure bogie, it is Contributed in stability security of freight car of oil tank through static load test, dynamic characteristics analysis. vibration performance test etc. to verify intensity of bogie frame & body structure

  • PDF

Characteristic of a Soft Ground Behavior Subjected to Static and Dynamic Loads (A Study on the Model Test) (정하중 및 동하중이 작용하는 연약지반의 거동특성(비교모형실험))

  • Kim, Jong-Ryeol;Kang, Jin-Tae;Lee, Chi-Yeal;Part, Yong-Myun;Jeong, Jea-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.111-118
    • /
    • 2008
  • In the study a 2 dimensional model test was executed to grasp the effect of the taking load of equipments on the ground when improving a soft ground like dredging reclaimed ground. The static load and the dynamic load in the consolidated model ground was $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively. After consolidating far two months by consolidation load of $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively, the ultimate bearing capacity was $0.16kg/cm^2,\;0.19kg/cm^2,\;0.24kg/cm^2$ respectively. And the energy price of dynamic load test at the same point as the settlement of static load test indicated $E=336{\sim}945kg{\cdot}cm,\;E=252{\sim}780kg{\cdot}cm\;and\;E=323{\sim}727kg{\cdot}cm$ for each consolidation load. When the static load and the dynamic load operated at the same ground condition, the heaving quantity was bigger in the case of the dynamic load than in the case of the static load, and the horizontal displacement quantity the in the case of dynamic load was exhibited very deficiently compared to the quantity in the case of static load test.