• 제목/요약/키워드: State of health estimation

검색결과 103건 처리시간 0.028초

LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정 (State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network)

  • 홍선리;강모세;정학근;백종복;김종훈
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.

변형률계를 이용한 강재보의 건전도 평가 시스템 개발에 관한 연구 (A Study on Development of Structural Health Monitoring System for Steel Beams Using Strain Gauges)

  • 한현규;안형준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.99-109
    • /
    • 2012
  • 이 연구에서는 변형률계를 사용하여 변위를 추정하는 이론식을 제안 및 검증하고 하중 작용점과 크기를 추정하여 강재보의 건전도 평가 시스템을 개발하고자 하였다. 실험결과 160kN(항복하중의 56%)가력시 최대처짐 점에서 변형률계를 사용하여 얻는 처짐과 변위계의 측정처짐과의 오차율이 2%이내로 나타났으며 하중작용점 및 크기의 추정도 오차율1% 이내로 나타났다. 이를 통해 변형률계로 강재보의 변위 및 하중을 계측 할 수 있으며 나아가 변위계와 하중계의 생략으로 경제적인 센서설계를 할 수 있다. Lab VIEW로 구현된 건전도 평가 프로그램은 측정된 데이터가 일정 범위(강도 한계상태, 사용성 한계상태, 항복변형률)를 넘어설 때 단계별 경고를 발생하였고 변형률계 만으로 사용성한계상태와 강도한계상태를 동시에 모니터링 할 수 있었다.

Online estimation of noise parameters for Kalman filter

  • Yuen, Ka-Veng;Liang, Peng-Fei;Kuok, Sin-Chi
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.361-381
    • /
    • 2013
  • A Bayesian probabilistic method is proposed for online estimation of the process noise and measurement noise parameters for Kalman filter. Kalman filter is a well-known recursive algorithm for state estimation of dynamical systems. In this algorithm, it is required to prescribe the covariance matrices of the process noise and measurement noise. However, inappropriate choice of these covariance matrices substantially deteriorates the performance of the Kalman filter. In this paper, a probabilistic method is proposed for online estimation of the noise parameters which govern the noise covariance matrices. The proposed Bayesian method not only estimates the optimal noise parameters but also quantifies the associated estimation uncertainty in an online manner. By utilizing the estimated noise parameters, reliable state estimation can be accomplished. Moreover, the proposed method does not assume any stationarity condition of the process noise and/or measurement noise. By removing the stationarity constraint, the proposed method enhances the applicability of the state estimation algorithm for nonstationary circumstances generally encountered in practice. To illustrate the efficacy and efficiency of the proposed method, examples using a fifty-story building with different stationarity scenarios of the process noise and measurement noise are presented.

이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정 (State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter)

  • 정홍련;김준호;김승우;김종훈;강은진;윤정우
    • 마이크로전자및패키징학회지
    • /
    • 제31권1호
    • /
    • pp.16-22
    • /
    • 2024
  • 전기자동차와 신재생에너지에 관한 관심이 높아지면서 건설장비 산업분야에서도 리튬이온 배터리를 접목하려는 요구가 높아지고 있다. 건설중장비는 건설 현장의 다양한 작업으로 인해 전류 용량의 감소가 급속히 진행되기 때문에 SOC(State of Charge) 및 SOH(State of Health) 같은 배터리의 상태를 더욱 정확하게 추정할 필요가 있다. 본 논문에서는 SOC와 SOH를 동시에 추정이 가능한 적응제어 기법 기반 이중확장칼만필터(Dual Extended Kalman Filter, DEKF) 알고리즘을 이용하여 실제 측정데이터와의 오차를 비교하였다. 배터리 충전 상태 예측을 위해 배터리 셀을 완전 충전 후 0.2C-rate조건에서 SOC 5% 간격으로 OCV를 측정하였고, 배터리의 열화를 판단할 수 있는 건전성 지표 확보를 위해 다양한 C-rate(0.2, 0.3, 0.5, 1.0, 1.5C rate) 조건에서 50 Cycle 동안 노화 실험을 수행하였다. DEKF를 이용한 SOC 및 SOH 추정 오차는 C-rate이 커질수록 커지는 경향을 보였으며 특히 SOC 추정결과, 0.2, 0.5 및 1C-rate에서 6%이하로 나타남을 확인하였다. 또한 SOH 추정 결과는 0.2 와 0.3C-rate에서 각각 최대오차 1.0% 및 1.3% 이내로 좋은 성능을 보이는 것으로 확인하였다. 다만, C-rate가 0.5C-rate에서 1.5C-rate으로 증가함에 따라 추정오차도 1.5%에서 2%로 다소 증가하는 것을 확인할 수 있었으나, 모든 C-rate 조건에서 DEKF를 사용한 SOH의 추정 성능은 약 2% 이내인 것으로 나타났다.

리튬 이차 전지의 전기화학 모델링과 전기적 실험 기반 상태 추정 (State of Health estimation based on Secondary Li-ion battery Electrochemical Modeling and Electrical experiment)

  • 김수안;박성윤;김종훈
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1098-1103
    • /
    • 2020
  • 본 논문은 리튬 이온 이차 전지의 전기적 실험 및 전기화학적 모델링을 통한 배터리 수명 상태(SOH)의 추정 방법을 다룬다. 배터리 전기적 노화 실험을 통하여 실제 배터리 수명 상태를 확인하기 위하여 전류 적산법을 사용한다. 전기적 실험에서 도출한 내부저항 값을 사용하여 SOH를 추정하며, 전기화학 모델링에서 사이클 수의 증가에 따른 SEI Layer의 변화를 통해 SOH를 추정한다. 실제 배터리 수명 상태를 포함한 세 가지 방법의 SOH 추정 방법에 가중치를 적용하여 새로운 SOH를 도출하며, 이는 전류적산법을 사용하여 구한 실제 값과의 오차를 줄여주어 추정 성능을 높인다.

배터리의 노화 상태를 고려한 배터리 SOC 추정 (Battery State of Charge Estimation Considering the Battery Aging)

  • 이승호;박민기
    • 전기전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.298-304
    • /
    • 2014
  • 배터리를 사용하고 있는 시스템에서 배터리의 잔존 용량에 대한 정보는 매우 중요하며, 따라서 정확한 SOC(State of Charge)의 추정이 필요하다. 배터리는 노화됨에 따라 전체 사용 가능 용량이 줄어들고 성능이 떨어지는데 이러한 노화의 영향을 고려하지 않는 배터리의 SOC 추정 방법은 추정의 정확도가 떨어지는 단점이 있다. 따라서 본 논문에서는 배터리의 노화 상태를 고려하여 배터리의 SOC를 추정하는 새로운 방법을 제안한다. 제안한 방법에서는 배터리의 전압-SOC 특성 곡선을 Boltzmann 방정식을 사용하여 모델링하고 노화 지표를 정의하며, 노화 지표를 Boltzmann 방정식 모델과 결합하여 SOC를 추정한다. 따라서 제안한 방법은 배터리의 노화 상태를 SOC 추정에 반영하여 노화된 배터리에 대한 정확한 SOC 추정이 가능하다. 또한 새 배터리와 1년 사용한 배터리에 대한 실험과 시뮬레이션을 통하여 제안한 방법의 유효성을 확인한다.

Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input

  • Palanisamy, Rajendra P.;Cho, Soojin;Kim, Hyunjun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.489-503
    • /
    • 2015
  • Response estimation at unmeasured locations using the limited number of measurements is an attractive topic in the field of structural health monitoring (SHM). Because of increasing complexity and size of civil engineering structures, measuring all structural responses from the entire body is intractable for the SHM purpose; the response estimation can be an effective and practical alternative. This paper investigates a response estimation technique based on the Kalman state estimator to combine multi-sensor data under non-zero mean input excitations. The Kalman state estimator, constructed based on the finite element (FE) model of a structure, can efficiently fuse different types of data of acceleration, strain, and tilt responses, minimizing the intrinsic measurement noise. This study focuses on the effects of (a) FE model error and (b) combinations of multi-sensor data on the estimation accuracy in the case of non-zero mean input excitations. The FE model error is purposefully introduced for more realistic performance evaluation of the response estimation using the Kalman state estimator. In addition, four types of measurement combinations are explored in the response estimation: strain only, acceleration only, acceleration and strain, and acceleration and tilt. The performance of the response estimation approach is verified by numerical and experimental tests on a simply-supported beam, showing that it can successfully estimate strain responses at unmeasured locations with the highest performance in the combination of acceleration and tilt.

Adolescents' health behaviors and obesity: Does race affect this epidemic?

  • Dodor, Bernice A.;Shelley, Mack C.;Hausafus, Cheryl O.
    • Nutrition Research and Practice
    • /
    • 제4권6호
    • /
    • pp.528-534
    • /
    • 2010
  • This study explores the influence of health behaviors and individual attributes on adolescent overweight and obesity using data from Wave II (Add Health). Structural equation model/ path analysis using maximum likelihood estimation was utilized to analyze the relationships of health behaviors and attributes with obesity. Results of the model reveal that the causal paths (adolescents' attributes and health behaviors) for overweight and obesity were different for African American and Caucasian adolescents. Generally, African Americans were more susceptible to overweight and obesity than Caucasians. Although increasing levels of vigorous physical activities lowers the risk for obesity among African American and Caucasian adolescents alike, low family SES and being sedentary were associated with overweight and obesity among Caucasians. No significant associations were found among African Americans. Increased hours of sleep at night relate positively with obesity among African Americans. These findings suggest important elements in the consideration of race in developing effective intervention and prevention approaches for curbing the obesity epidemic among U.S. adolescents.