• Title/Summary/Keyword: State of Mixing

Search Result 501, Processing Time 0.031 seconds

Environmental Characteristics of the Seawater and Surface Sediment in the vicinity of Pusan Harbor Area in Winter (겨울철 부산항 주변해역의 수질과 표층퇴적물 환경특성)

  • PARK Young-Chul;YANG Han-Soeb;LEE Pil-Yong;KIM Pyoung-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.577-588
    • /
    • 1995
  • The chemical constituents for the seawater and sediment were measured to evaluate pollution in the sea around Pusan Harbor in winter, n992. The average value of trophic state index (TSI) was 19.4 at the outside of Buk Harbor, 50,4 at the inside of Buk Harbor, 56,3 at the Nam Harbor and 5,0 at the Kamchun Harbor. The high correlation found in salinity-nutrients diagram with AOU suggested that the enrichment of nutrients in Pusan Harbor during winter was mainly due to the influx of terrestrial effluents and partially by regenerated nutrients from suspended organic matters in the water column. The mean values of total ignition loss (TIL), COD and total sulfide in the surface sediments were$12.1\%$, 17.5 mg/g.dry wt. and 1.18 mg/g.dry wt. respectively. The highest level of those parameters was shown mostly at the inside of Buk Harbor. The mean concentration of total organic carbon (TOC), total organic nitrogen (TON), and total phosphorus were 24.9 mg/g.dry wt., 1.3mg/g.dry wt. and 0.69 mg/g. dry wt., respectively, Both of the highest level for TOC and total phosphorus have found at the Nam Harbor. On the other hand, the Highest level for TON was found at the inside of Buk Harbor. The TOC/TON atomic ratio with a range of 10.2-60.2 (mean value of 22.5) strongly indicated the active role of the input from the terrestrial organic pollutants.

  • PDF

Comparative Analysis on Resources Characteristics of Deep Ocean Water and Brine Groundwater (해양심층수와 지하염수 자원의 특성)

  • Moon D.S.;Jung D.H.;Kim H.J.;Shin P.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • Deep Ocean Water (DOW) is formed within restricted area including polar sea (high latitude) by cooling of surface seawater and globally circulating in the state of isolation from surface seawater. Although it is not as obvious as estuaries mixing, brine ground water is mixture of recirculated seawater and ground water. Seawater having high osmotic pressure infiltrates into an aquifer which is connected to the sea. In order to clarify the characteristics of deep ocean water and brine ground water, we investigated their origins, chemical compositions, water qualities and resources stabilities. While concentrations of stable isotopes (/sup 18/O and ²H) in seawater is 0‰, those in brine ground water is on meteoric water line or shifted toward oxygen line. It means that origin of brine ground water is different than that of deep ocean water. The ions dissolved in seawater (Na, Ca, Mg, K) are present in constant proportions to each other and to the total salt content of seawater. However deviations in ion proportions have been observed in some brine ground water. Some causes of these exception to the rule of constant proportions are due to many chemical reactions between periphery soil and ground water. While DOW has a large quantity of functional trace metals and biological affinity relative to brine ground water, DOW has relatively small amount of harmful bacteria and artificial pollutants.

  • PDF

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Application of HACCP for Hygiene Control in University Foodservice Facility - Focused on Vegetable Dishes (Sengchae and Namul) - (대학급식시설의 위생관리개선을 위한 HACCP 적용에 관한 연구 - 생.숙채류를 중심으로 -)

  • 허영수;이복희
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.3
    • /
    • pp.293-304
    • /
    • 1999
  • The purpose of this study was to evaluate the microbiological quality, and to assure the hygienic safety of the food production in the university food service facility located in Seoul in accordance with the Hazard Analysis Critical Control Point(HACCP) concepts. In the hygienic state assessment of kitchen, it has revealed that it was very important to remove water from the kitchen floor and to establish standard method for disinfection of cooking utensils. And foodservice workers were required to have training program for the safe handling of food and utensils since they did treat food without hygienic gloves. The kitchen layout had to be improved because the near distance of table with heating unit and shelf might cause the growth of microorganisms when prepared food was kept on the shelf. In terms of the timetemperature measurement and microbiological quality assessment during each of the food production phases, most of sengchae (raw vegetable dish) and namul (cooked vegetable dish) were treated within danger zone for food safeness ($5~60^{\circ}C$). It has shown that the microbiological quality of raw materials was very much inferior at the time of receiving based on the TPC($10^{5}~10^{7}$), coliform($10^{3}~1O^{6}$), which was not acceptable level(TPC:$10^{6}$, coliform:$10^{3}$) suggested by Solberg. Microbiological growth has increased in the both of sengchae and namul considerably during most of food production phase. Therefore, it is extremely important to reduce holding and serving time and to avoid treating food within the danger zone for food safeness. In addition, the prevention of cross-contamination during mixing the ingredients with improper equipments and with insanitary treatments by workers was also important to keep the food safety in this speciqic university foodservice facility.

  • PDF

A Study on the Preparation of Boogags by Traditional Methods and Improvement of Preservation (전통적 방법에 의한 부각의 제조 및 저장성 향상에 관한 연구)

  • 박재익;정계환;김봉섭;허종화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.986-993
    • /
    • 1994
  • As a part of development of traditional foods, mugwort boogag and dry laver boogag were fried insoybean oil, and BHA or tocopherol-added soybean oil. They were wrapped up in opp vinyl film, and preserved at $4^{\circ}C(RH{\;}40{\pm}5%){\;}and{\;}25^{\circ}C(RH{\;}80{\pm}5%)$. During the storage of bobogags, acid value, peroxide value, and TBA value were investigated. Changes of sensory evaluation and texture profile were also examined. Boogags were manufactured by washing the raw materials. drying in the shade, mixing them with glutinous rice flour, and hot-air drying up it to 13 % of moisture contents after dryed it up to 80% of moisture contents on dry table for 23days, in order. These boogags were packaged to manufacture goods with dryed state or fried at $160^{\circ}C$ for 10 sec. Acid value, peroxide value, and TBA value of boogags which preserved at $4^{\circ}C$ generally appeared lower than at $25^{\circ}C$. As storage time goes by, moisture contents of bobogagas preserved at $25^{\circ}C$ increased and its quality were gradually deteriorated. When the boogags were fried in BHA(0.01%) and tocopherol (0.01%) added soybean oil, changes of acid value, peroxide value, TBA value were generally low. During the storage of bobogagas antioxidant effect of BHA was higher than that of tocopherol. Texture was inclined to decrease as storage time goes, by that of boogags preserved at $4^{\circ}C$ was a little more satisfactory. Hardness was also high.

  • PDF

Generation of Chemically Active Species in Hybrid Gas-Liquid Discharges (기체-액체 혼합 방전에 의한 화학적 활성종 생성 특성)

  • Chung, Jae-Woo;Locke, Bruce R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.556-563
    • /
    • 2007
  • We carried out a laboratory scale experiment about the characteristics of chemically active species produced in hybrid gas-liquid discharges. The electrode configuration which had high voltage electrode in the gas phase and ground electrode in the liquid was utilized while high voltage electrode has been typically positioned in the liquid in other studies. Our electrode was configured in such a way as to increase the energy efficiency of chemical reactions by creating a higher electrical field strength and a narrower pulse width than the typical electrode configuration. The highest ozone concentration was obtained at 45 kV which was the medium value in operating voltages. The decrease of solution conductivity increased the resistance of liquid phase and the electric field strength through the gas phase, so ozone gene-ration rate was enhanced. The increase of voltage promoted the production rate of hydrogen peroxide by increasing the electric field strength. In a lower voltage, the increase of solution conductivity increased the degradation rate of $H_2O_2$, so the $H_2O_2$ generation rate decreased. On the other hand, the effects of UV radiation, shock waves etc. increased the $H_2O_2$ generation rate as the solution conductivity increased. A higher rate of $H_2O_2$ generation can be achieved by mixing argon to oxygen which generates a stronger and more stable discharges.

Hardening State and Basic Properties Changes According to the Mixture Ratio of MMA Resin Used as a Waterproofing Coating Material in Concrete Bridges (콘크리트 교면용 도막방수재로 사용되는 MMA 수지의 배합비율에 따른 경화상태 및 기본 물성에 관한 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.224-234
    • /
    • 2019
  • Waterproof layers are installed in civil engineering structures and bridge construction is commonly finished by applying a layer of regular or asphalt concrete above the waterproof layer. However, asphalt materials are susceptible to melting at high temperature due to its superior temperature sensitivity, and this causes the waterproofing material to melt due to the high temperature of the asphalt concrete, thereby increasing the defect occurrence rate due to the thickness reduction. In this study, tensile strength and elongation of hard and soft type of MMA(Methyl Methacrylate) applied to bridges were compared in accordance to standard performance criteria based on different mixture ratios. Results of comparative testing showed that hard MMA resin can display a satisfactory tensile strength, and soft MMA resin displays satisfactory elongation properties, but as the two resin types are separately used, neither types are able to satisfy the standard requirements outlined in KS F 4932. When the amount of the powder exceeds 56.25% of the total amount, voids are generated on the surface after curing and self leveling was impossible and a heterogeneous surface is formed. Furthermore, when the hard resin: soft resin: powder mixture ratio was set to 15g: 85g: 150g. the tensile strength was $1.5N/mm^2$ and the elongation percentage was 133% which satisfy the tensile performance of KS F 4932.

Changes of Physico-chemical Properties of paper Mill Sludge amended with Pig Manure in Composting Process (제지슬러지와 돈분을 이용한 퇴비화 과정중 이화학적 특성 변화)

  • Min, Kyoung-Hoon;Chang, Ki-Woon;Yu, Young-suk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.86-92
    • /
    • 2000
  • This study was conducted to determine the optimal mixing ratio of the paper mill sludge(PMS) and pig manure(PM). Since the former contains lots of total carbon and low nitrogen, it was used as carbon source. Also, dried paper mill sludge(DPMS) was added to the mixture to control the water content. The treatments was composed of four as follows, PMS-100(PM 0%+PMS 80%+DPMS 20%), PMS-85(15+65+20), PMS-70(30+50+20), and PMS-55(45+35+20). The mixtures were composted under aerobic condition in $1.25m^3$ static piles. The piles were aerated for 15 minutes per day and turned over the mixture once a week at the early stage of composting. To estimate the maturity of composts, the changes of physico-chemical properties such as temperature, pH, C/N ratio and color were monitored every week. The 25-30 and 55-60% as optimal condition of C/N ratio and moisture content were respectively recommended for effective composting by the evaluation of the changes of phsico-chemical properties for materials taken from compost files during the composting period. When the 30 and 45% of PM were mixed with PMS, the maturity time at least demanded to the stable state were shortened and the qualify of the final product was improved in a view of nutritional components.

  • PDF

A Study on the Evaluating Method the most Favorable Mixture Proportion of Blended Fine Aggregate for Effective Application of Recycled Aggregate (재생골재의 효율적인 활용을 위한 혼합잔골재의 최적배합평가방법에 관한 연구)

  • Han, Cheon-Goo;Yoon, Gi-Won;Lee, Gun-Cheol;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.113-119
    • /
    • 2006
  • It is now established that more than two types of blended aggregate have beneficial effects on quality and supply of concrete in the long run. However, studies on blended aggregate have not widely been progressive and the evaluation method of its most favorable mixture proportion is still needed. Therefore this study investigated the most favorable mixture proportion through the physical experiment of fresh and hardened state's cement mortar, in response to three types of composite ratio, natural fine aggregate(Ns), crushed fine aggregate(Cs) and recycled fine aggregate(Rs). Test showed that increase of blending ratio of Ns and Cs improved fluidity of mot1ar. For the properties of compressive and flexural strength, mortar blending Ns and Cs properly, exhibited similar value to one using only Cs, while mortar mixing Rs showed lower strength value as less as 6% of control one. Mortar using only Rs exhibited the largest drying shrinkage value. In addition, even thought it is not a clear quantitative analysis, technical-imaging-skill presenting the most favorable mixture proportion 3-dimensionally is proposed in this research, in order to notify the proportion easily.

  • PDF