• Title/Summary/Keyword: State of Matter

Search Result 649, Processing Time 0.047 seconds

Electrical resistivity and magnetization of Sr$_{1-x}K_xBiO_3$ superconductor in magnetic field: Observation of a reentrant superconducting resistive transition at low temperature

  • Kim, J.S.;Kim, D.C.;Joo, S.J.;Kim, G.T.;Lee, S.Y.;Khim, Z.G.;Bougerol-Chaillout, C.;Kazakov, S.M.;Pshirkov, J.S.;Antipov, E.V.;Park, Y.W.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.210-213
    • /
    • 1999
  • Magnetoresistance and magnetization of Sr$_{l-x}K_xBiO_3$ were both measured as functions of temperature and magnetic field. Resistivity goes to zero at T=10.1K and the overall superconducting transition behavior under applied magnetic fields is similar to that of other BiO based superconductors. Also, below T<5K we have observed the reappearance of finite resistivity with a power law temperature dependence( ${\rho}$ ${\sim}$T$^1$); the reentrant superconducting transition of resistivity. Contrary to the Josephson weak link effect in polycrystalline samples, which gives the depression of the superconducting state with increasing electrical current or magnetic field, the superconducting state for T<5K is resumed by applying a higher current or magnetic field. Magnetic susceptibility( ${\chi}$ ) of Sr$_{l-x}K_xBiO_3$ for T<5K also shows similar trends to that observed in transport measurements: increase of ${\chi}$ (paramagnetic-like behavior) at a low magnetic fields(B=50 Oe) and, the resumption of perfect diamagnetism at high fields.

  • PDF

3-D Hydrogen-Bonded Frameworks of Two Metal Complexes with Chelidamic Acid: Syntheses, Structures and Magnetism

  • Zhou, Guo-Wei;Guo, Guo-Cong;Liu, Bin;Wang, Ming-Sheng;Cai, Li-Zhen;Huang, Jin-Shun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.676-680
    • /
    • 2004
  • Complexes M($C_7H_2NO_5)3H_2O{\cdot}H_2O{\cdot}0.25MeCN$ (M=Ni, Co) were crystallized from the reactions of $Ni(CH_3COO)_2{\cdot}4H_2O\;or\;Co(CH_3COO)_2{\cdot}2H_2O$ with KSCN and 2,6-dicarboxy-4-hydroxypyridine (chelidamic acid). The structures were characterized by X-ray crystallography. The crystal structures of 1 and 2 show a distorted octahedral coordination geometry around the M(II) ions, which are chelated by one nitrogen atom and two oxygen atoms of the chelidamic acid and three water molecules. Complexes 1 and 2 display the hydrogen-bonded 3D framework. The magnetic behavior of 2 exhibits antiferromagnetic interaction.

Examining the Concept of Matter in the 7th National Science Curriculum (제7차 과학과 교육과정에서 물질 개념에 대한 고찰)

  • Hong, Mi-Young;Jeon, Kyung-Moon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • The purpose of this study was to examine the 7th national science curriculum (chemistry domain) regarding the meanings of ‘mulgil' (Korean), the particulate nature of matter, and the state of matter. It was found that the term of ‘mulgil' was being used vaguely as representing material, matter, or substance without clear definition. This was problematic by reason that it could hinder students from having the concept of substance. Regarding the particulate nature of matter, molecule was introduced as a basic unit of matter at grade 7, prior to atom and ion, which were introduced at grade 9 and 10, respectively. It is necessary to reconsider the sequence of each particle concept to provide students with more consistent and comprehensive understanding of structure of matter. In the case of change of state, key concepts such as conservation of matter or reversibility were omitted in the curriculum document, and explanations based on various aspects of particles were somewhat insufficient. The concept of matter is fundamental to chemistry, and we must recognize it as a concept that needs to be taught clearly. Implications for curriculum revision were discussed.

Thermoelectric power and resistivity of the Sr$_{1-x}K_xBiO_3$ superconductor

  • Kim, D.C.;Kim, J.S.;Joo, S.J.;Bougerol-Chaillout, C.;Kazakov, S.M.;Pshirkov, J.S.;Antipov, E.V.;Park, Y.W.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.229-232
    • /
    • 1999
  • We have measured the temperature dependence of thermoelectric power (TEP) and resistivity for the Sr$_{1-x}K_xBiO_3$ superconductor (x=0.45-0.6). At T=10.2K, the resisitivity starts to increase from zero and a rather broad superconducting phase transition (${\Delta}$T ${\sim}$ 2.3K) is observed. TEP at room temperature has a small negative value ( S =-1.96${\mu}$V/K), characteristic of metallic-like TEP. The temperature dependence of TEP shows two distinct features. With decreasing temperature from room temperature, the absolute value of TEP decreases and the sign of TEP changes from negative to positive around 200k. Also, the negative slope of TEP(dS/dT) decreases substantially and becomes rather flat at around 160k, which is a feature already noted in Ba$_{1-x}K_xBiO_3$[1].

  • PDF

Influence of Drying Temperature and Duration on the Quantification of Particulate Organic Matter

  • Lee, Jin-Ho;Doolittle, James J.;Lee, Do-Kyoung;Malo, Douglas D.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2006
  • Various drying conditions, temperatures (40 to $80^{\circ}C$) and durations (overnight to 72 hrs), for the particulate organic matter (POM) fraction after wet-sieving size fractionation have been applied for determination of POM contents in the weight loss-on-ignition method. In this study, we investigated the optimum drying condition for POM fraction in quantification of POM and/or mineral-associated organic matter (MOM; usually indirectly estimated). The influence of the drying conditions on quantifying POM was dependent upon soil properties, especially the amount of soil organic components. In relatively high organic soils (total carbon > 40 g/kg in this study), the POM values were significantly higher (overestimated) with drying at $55^{\circ}C$ than those values at $105^{\circ}C$, which were, for example, 173.2 and 137.3 mg/kg, respectively, in a soil studied. However, drying at $55^{\circ}C$ for longer than 48 hrs of periods produced consistent POM values even though the values were much higher than those at $105^{\circ}C$. Thus, indirect estimates of MOM (MOM = SOM-POM) also tended to be significantly impacted by the dry conditions. Therefore, we suggest POM fractions should be dried at $105^{\circ}C$ for 24 hrs as determining POM and MOM contents. If the POM traction is needed to be dried at a lower temperature (e.g. $55^{\circ}C$) with a specific reason, at least 48 hrs of drying period is necessary to obtain consistent POM values, and a moisture correction factor should be determined to adjust the values back to a $105^{\circ}C$ weight basis.

An Analysis of Science Process Skills for K-12 Science Curriculum Articulation : Focused on the Concept of the State and the State Change of Matter (유치원, 초등, 중등 과학 교재의 연계성을 위한 탐구능력 분석 -물질의 상태 및 상태 변화 개념을 중심으로 -)

  • 백성혜;박진옥;박재원;임명혁;고영미;김효남;조부경
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.1
    • /
    • pp.91-105
    • /
    • 2001
  • This study was to analyze science process skills related to 'state of matter' and 'state change of matter' in the kindergarten, elementary and middle school science textbooks. On the base of articulation, we analyzed science textbooks of the 5th kindergarten curriculum, the 6th elementary school science curriculum and the 6th middle school science curriculum. The findings indicated that the scientific inquiry abilities of predicting, classifying, hypothesizing and designing investigations are not enough in all grade science textbooks. Also, while young children have measuring ability theoretically, it was represented only in high grade textbooks. We concluded that these were inappropriate from the viewpoint of articulation which is related to scientific inquiry ability.

  • PDF

Elementary School Students' Understanding of Matter and its Examples (물질의 개념과 예에 대한 초등학생들의 이해)

  • Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.1
    • /
    • pp.150-161
    • /
    • 2022
  • Matter is a basic concept that students should understand during their science classes. However, many difficulties are associated with understanding the concepts of matter due to its abstraction. In this study, the elementary school students' understanding of the concept of matter and the examples of matter and non-matter are investigated and analyzed by grade. The subjects of this study were 418 students from third grade to sixth grade. The survey was conducted using a free-response questionnaire comprising three questions. The results are as follows. First, the elementary school students' conceptions of matter were "materials that make up objects," "what can be seen and touched," and "solid, liquid, and gas." As the grade increased, the explanations for a material decreased and the explanations for the state of matter increased. Furthermore, only few students explained matter in terms of mass and volume. Second, solids were the most common examples of matter presented by the students, and liquids and gases were included in the upper grades. However, there were many cases in the upper grades where students were unable to distinguish between objects and matter. Third, non-matter was properly presented by the 6th graders as compared to the other graders, and in many cases, objects, liquids, and gases were mentioned as non-matter. Fourth, it was found that the students' conceptions of matter influenced the examples of matter and non-matter that they presented.