• Title/Summary/Keyword: State Variable Equalization

Search Result 11, Processing Time 0.023 seconds

Concurrent Equalizer with Squared Error Weight-Based Tap Coefficients Update (오차 제곱 가중치기반 랩 계수 갱신을 적용한 동시 등화기)

  • Oh, Kil-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.157-162
    • /
    • 2011
  • For blind equalization of communication channels, concurrent equalization is useful to improve convergence characteristics. However, the concurrent equalization will result in limited performance enhancement by continuing concurrent adaptation with two algorithms after the equalizer converges to steady-state. In this paper, to improve the convergence characteristics and steady-state performance of the concurrent equalization, proposed is a new concurrent equalization technique with variable step-size parameter and weight-based tap coefficients update. The proposed concurrent vsCMA+DD equalization calculates weight factors using error signals of the variable step-size CMA (vsCMA) and DD (decision-directed) algorithm, and then updates the two equalizers based on the weights respectively. The proposed method, first, improves the error performance of the CMA by the vsCMA, and enhances the steady-state performance as well as the convergence speed further by the weight-based tap coefficients update. The performance improvement by the proposed scheme is verified through simulations.

Alternate Adaptation Algorithm for Blind Channel Equalization (블라인드 채널 등화를 위한 교번 적응 알고리즘)

  • Oh, Kil-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.129-135
    • /
    • 2011
  • The alternate adaptation algorithm (AAA) is proposed to improve the convergence characteristics and steady-state performance of the constant modulus algorithm (CMA). The alternate adaptation algorithm is a new equalization method which adapts an equalizer alternately by the algorithm with excellent blind convergence characteristics or the algorithm with better steady-state error performance. In this paper, it is introduced that the alternate adaptation equalization of the vsCMA (variable step-size CMA) and the decision-directed (DD) algorithm. We, first, designed the vsCMA with variable step-size to improve the steady-state error performance of the CMA, and combined it with the DD by alternate adaptation. As a result, it was mitigated that the sensitivity of performance fluctuation due to switching timing in CMA-DD switching method, and it was improved that the convergence speed and steady-state error performance of the CMA. Through computer simulations, under multipath channel condition, the usefulness of the proposed method was confirmed for 16-QAM.

Performance Evaluation of a Dual-Mode Blind Equalization Algorithm Using the Size of Decision-Directed Error Signal for High-Order QAM Signals (고차 QAM 신호에 대한 결정 지향 오차 신호의 크기 값을 이용한 이중 모드 블라인드 등화 알고리즘의 성능 분석)

  • Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • In this paper, we propose a dual-mode blind equalization algorithm that two of the blind equalization algorithm using the size of the decision-directed error signal is automatically switched. The proposed algorithm has a faster convergence speed due to operation of the MSAGF-SMMA with large fixed step-size mainly in the initial equalization. After the equalization has been made to some extent, the proposed algorithm has a smaller residual error in the steady- state by operation of the MSAGF-SMMA with a variable step-size mainly. The variable step-size is determined by multiplying the size of the decision-directed error signal of a fixed step-size. In this paper, we analyze the performance of the proposed algorithm. The computer simulation results demonstrate that the proposed algorithm has a significantly improved performance in terms of a residual inter-symbol interference and residual error in the steady-state compared with the MMA, SMMA, and MSAGF-SMMA.

Performance Improvement of S-MMA Adaptive Equalization Algorithm based on the Variable Step Size (가변 스텝 크기를 이용한 S-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • This paper proposes the improving the equalization performance using the variable step size in the S-MMA (Sliced-Multi Modulus Algorithm) equalization algorithm in order to minimize the effect of intersymbol interference which occurs at the nonlinear transfer function of communication channel. The S-MMA were showned for the improving the steady state equalization performance and misadjustment compared to the MMA present algorithm, this two algorithm has a limitation of performance improvement due to the adapting the fixed step size according to the error signal amplitude. In order to solving the abovemensioned problem, the proposed algorithm was adopting the variable step size proportional to the error signal amplitude and the computer simulation was performed for showing the performance improving. As a result of simulation, the proposed VSS S-MMA algorithm has more superior equalization performance compared to the present S-MMA.

A Performance Evaluation of Blind Equalization Algorithma for a Variable Step-Size MSAG-GMMA (가변 스텝 크기 MSAG-GMMA 적응 블라인드 등화 알고리즘의 성능 평가)

  • Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.77-82
    • /
    • 2018
  • This paper is concerned with the performance analysis of a modified stop-and-go generalized multi-modulus algorithm (MSAG-GMMA) adaptive blind equalization algorithm with variable step size. The proposed algorithm multiplies the fixed step size by the error signal of the decision-oriented algorithm in the equalization coefficient update equation, and changes the step size according to the error size. Also, the MSAG-GMMA having a fixed step size is operated so as to maintain a fast convergence speed from a certain threshold to a steady state by determining the error signal size of the decision-directed algorithm, and when the MSAG-GMMA to work To evaluate the performance of the proposed algorithm, we use the ensemble ISI, ensemble-averaged MSE, and equalized constellation obtained from the output of the equalizer as the performance index. Simulation results show that the proposed algorithm has faster convergence speeds than MMA, GMMA, and MSAG-GMMA and has a small residual error in steady state.

A Parallel Equalization Algorithm with Weighted Updating by Two Error Estimation Functions (두 오차 추정 함수에 의해 가중 갱신되는 병렬 등화 알고리즘)

  • Oh, Kil-Nam
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, to eliminate intersymbol interference of the received signal due to multipath propagation, a parallel equalization algorithm using two error estimation functions is proposed. In the proposed algorithm, multilevel two-dimensional signals are considered as equivalent binary signals, then error signals are estimated using the sigmoid nonlinearity effective at the initial phase equalization and threshold nonlinearity with high steady-state performance. The two errors are scaled by a weight depending on the relative accuracy of the two error estimations, then two filters are updated differentially. As a result, the combined output of two filters was to be the optimum value, fast convergence at initial stage of equalization and low steady-state error level were achieved at the same time thanks to the combining effect of two operation modes smoothly. Usefulness of the proposed algorithm was verified and compared with the conventional method through computer simulations.

A Variable Modulus Algorithm using Sigmoid Nonlinearity with Variable Variance (가변 분산을 갖는 시그모이드 비선형성을 이용한 가변 모듈러스 알고리즘)

  • Kim Chul-Min;Choi Ik-Hyun;Oh Kil-Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.649-653
    • /
    • 2005
  • To estimate for an error signal with sigmoid nonlinearity what reduced constellation applies closed eye pattern in the initial equalization, there can be improves problems of previous soft decision-directed algorithm that increasing estimate complexity and decreasing of convergence speed when substitute high-order constellation. The characteristic of sigmoid function is adjusted by a mean and a variance parameter, so it depends on adjustment of variance that what reduced constellation $values(\gamma)$ can have ranges between + $\gamma$ and - $\gamma$. In this paper, we proposed Variable Modulus Algorithm (VMA) that can be improving a performance of steady-state by adjustment of variance when equalization works normally and each cluster of constellation decrease.

  • PDF

Performance Improvement of CCA Blind Equalization Algorithm by Adaptive Step Size (적응 스텝 크기에 의한 CCA 블라인드 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.109-114
    • /
    • 2016
  • This paper relates with the performance improvement of CCA (Compact Constellation Algorithm) equalization algorithm by adding the adaptive step size control in order to the minimization of intersymbol interference and additive noise effects that is occurs in the channel for digital radio transmissionl. In general, the fixed step size was used in order to adaptation in equalizer algorithm. But in proposed algorithm, the variable step size were adapted that is proposional to the nonlinear function of error signal for equalization. In order to show the improved equalizatation performance, the output signal constellation of equalizer, residual isi, maximum distortion, MSE and SER were used, then it were compared with the present CCA algorithm. As a result of computer simulation, the adaptive step size CCA has more better performance in the every performance index compared to the fixed step size CCA after in the steay state.

Improvement of Position Estimation Based on the Multisensor Fusion in Underwater Unmanned Vehicles (다중센서 융합 기반 무인잠수정 위치추정 개선)

  • Lee, Kyung-Soo;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • In this paper, we propose the position estimation algorithm based on the multisensor fusion using equalization of state variables and feedback structure. First, the state variables measured from INS of main sensor with large error and DVL of assistance sensor with small error are measured before prediction phase. Next, the equalized state variables are entered to each filter and fused the enhanced state variables for prediction and update phases. Finally, the fused state variables are returned to the main sensor for improving the position estimation of UUV. For evaluation, we create the moving course of UUV by simulation and confirm the performance of position estimation by applying the proposed algorithm. The evaluation results show that the proposed algorithm is the best for position estimation and also possible for robust position estimation at the change period of moving courses.

Performance Analysis of MSAGF-MMA Adaptive Blind Equalization Algorithm with Variable Step Size Using Input Power Signal and Decision-Directed Error Signal (입력 전력 신호와 결정지향 오차 신호를 이용한 가변 스텝 크기를 가지는 MSAGF-MMA 적응 블라인드 등화 알고리즘의 성능 분석)

  • Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.53-58
    • /
    • 2020
  • This paper is concerned with the performance analysis of MSAGF-MMA with variable step size whose step size varies according to input power signal and decision-directed error signal. The proposed algorithm is made to change according to the input power signal which can reliably increase the convergence speed to the steady state by making the step size less affected by the fluctuation of the input signal in the MMA having the binary flag obtained from the modified Stop-and-Go algorithm. At the same time, the step size can be varied according to the decision-directed error signal so that the residual error can be reduced in the steady state. As a result of computer simulations, it is confirmed that the proposed algorithm has a very good performance in the evaluation of residual ISI and averaged-MSE in steady state as well as in terms of convergence speed to steady state compared to MMA and MSAGF-MMA.