• Title/Summary/Keyword: State Feedback Controller

Search Result 676, Processing Time 0.021 seconds

Fast Compensator of Periodic Disturbance in Disk Drives (디스크 드라이브의 주기적 외란 고속 보상 제어)

  • 부찬혁;김호찬;강창익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.153-163
    • /
    • 2004
  • The control objective in hard disk drives is to move head as fast as possible to target track and position the head over the center of target track in the presence of external disturbances. The external shock or disk clamping error in manufacturing process causes the disk center to deviate from the disk rotation center. The disk shift acts on the control system as disturbance and degrades severely the performance of disk drives. In this paper, we present a new controller that compensates for the periodic disturbances very fast. The disturbance compensator is arranged in parallel with the state feedback controller. To avoid the interference with the state feedback controller, the compensator creates compensation signal without the feedback of system output until steady state. The pulse type controller is included additionally for improving the transient performance due to initial state. Finally, in order to demonstrate the superior performance of the proposed compensator. we present some experimental results using a commercially available disk drive.

Control of the Attitude of a Wheeled Inverted Pendulum (차륜형 도립진자의 자세 제어)

  • Lee, Weon-Seob;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.303-308
    • /
    • 1998
  • In this paper a neural network controller called "Feedback-State Learning" for control of the attitude of a wheeled inverted pendulum is presented. For the controller the design of a stable feedback controller is necessary, so the LQR is used for the feedback controller because the LQR has good performance on controlling nonlinear systems. And the neural networks are used for a feed forward controller. The designed controller is applied to the stabilization of a wheeled inverted pendulum. Because of its nonlinear characteristics such as friction and parameter variations in the linearization, the wheeled inverted pendulum is used for demonstration of the effectiveness of the proposed controller.

  • PDF

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Feedback Linearization of an Electro-Hydraulic Velocity Control System and the Implementation of the Digital State Feedback Controller (전기유압 속도제어 시스템의 궤환 선형화 및 이에 대한 디지틀 상태 궤환 제어의 구현)

  • 김영준;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1036-1055
    • /
    • 1992
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the implementation of the digital state feedback controller is studied. The $C^{\infty}$ nonlinear transfomation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed implementation method is easier than the other proposed methods and it is possible to control in real time. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful..

Repetitive Controller Design for a Robust Feedback Control System (강인한 궤환 제어 시스템을 위한 반복 제어기의 설계)

  • Kim, Kwang-Soo;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.668-673
    • /
    • 2010
  • Given a periodic reference signal or disturbance, repetitive control is a special control scheme to reduce a tracking error effectively by the periodic signal generator in the repetitive controller. In general, a repetitive controller is added on the existing feedback control system to improve the tracking performance. However, because the information used in the design of the feedback controller is not taken into account, the design problem of the repetitive controller is totally another problem irrespective of that of the feedback controller. In this paper, we present a more general method to design an add-on type repetitive controller using the information on the performance of the existing feedback control system. We first show that a robust stability condition of repetitive control systems is obtained using the well-known robust performance condition of general feedback control systems. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. From the obtained results, several design criterions for repetitive controller are provided. Through the simulation study, the feasibility of the proposed method is verified.

Design of a Position Control System for Electro-hydraulic Motors (전기유압식 모터용 위치제어 시스템의 설계)

  • 박진길;진강규;노영오;한봉주;정주윤;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.30-41
    • /
    • 1992
  • For the state feedback controller which measures only partial state variables, a state observer can be used to give the estimates of unmeasurable states. In this paper, the delayed state feedback method instead of the state observer for desingning a tracking controller of electro-hydraulic control system is presented. The controller design is based on augmenting the original system by one additional integral and proportional element which compensates for the effect of the integral control and on feeding back the measurable state variables and their delayed values. The performance of the proposed position control system is compared with both that of the full state feedback control system and that of the digital PID control system tuned by the Ziegler-Nichols method and by the parameter readjustment through the computer simulation. And then robustness against unmeasurable constant disturbace and parameter variations during operations is also checked.

  • PDF

Feedback linearization of the electro-hydraulic velocity control system (전기유압 속도제어 시스템의 귀환 선형화 제어)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1116-1121
    • /
    • 1991
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the Implementation of the digital state feedback controller is studied. The C.inf. nonlinear transformation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation Is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed method In this paper is easier to implement than other proposed methods and it is possible to control in real tine. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful.

  • PDF

Time delay control with state feedback for azimuth motion of the frictionless positioning device

  • Jeong, Ho-Seop;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.385-388
    • /
    • 1996
  • A time delay controller with state feedback is proposed for azimuth motion control of the frictionless positioning device which is subject to the variations of inertia in the presence of measurement noise. The time delay controller, which is combined with a low-pass filter to attenuate the effect of measurement noise, ensures the asymptotic stability of the closed loop system. It is found that the low-pass filter tends to increase the robustness in the design of time delay controller as well as the gain and phase margins of the closed loop system. Numerical and experimental results support that the proposed controller guarantees a good tracking performance irrespective of the variation of inertia and the presence of measurement noise.

  • PDF

Design of an Optimal State Feedback Controller for Container Crane Systems with Constraints (제약조건을 가지는 컨테이너 크레인 시스템용 최적 상태궤환 제어기 설계)

  • 주상래;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • This paper presents the design of an optimal state feedback controller for container cranes under some design specifications. To do this, the nonlinear equation of a container crane system is linearized and then augmented to eliminate the steady-state error, and some constraints are derived from the design specifications. Designing the controller involves a constrained optimization problem which classical gradient-based methods have difficulties in handling. Therefore, a real-coding genetic algorithm incorporating the penalty strategy is used. The responses of the proposed control system are compared with those of the unconstrained optimal control system to illustrate the efficiency.

  • PDF

A Discrete State-Space Control Scheme for Dynamic Voltage Restorers

  • Lei, He;Lin, Xin-Chun;Xue, Ming-Yu;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • This paper presents a discrete state-space controller using state feedback control and feed-forward decoupling to provide a desirable control bandwidth and control stability for dynamic voltage restorers (DVR). The paper initially discusses three typical applications of a DVR. The load-side capacitor DVR topology is preferred because of its better filtering capability. The proposed DVR controller offers almost full controllability because of the multi-feedback of state variables, including one-beat delay feedback. Feed-forward decoupling is usually employed to prevent disturbances of the load current and source voltage. Directly obtaining the feed-forward paths of the load current and source voltage in the discrete domain is a complicated process. Fortunately, the full feed-forward decoupling strategy can be easily applied to the discrete state-space controller by means of continuous transformation. Simulation and experimental results from a digital signal processor-based system are included to support theoretical analysis.