The discrete wavelet transform is utilized as preprocessing of Neural Network(NN) to identify aging state of internal partial discharge in transformer. The discrete traveler transform is used to produce wavelet coefficients which are used for Classification. The statistical parameters (maximum of wavelet coefficients, average value, dispersion, skewness, kurtosis) using the wavelet coefficients are input into an back-propagation neural network. The neurons whose weights have obtained through Result of Cross-Validation. The Neural Network learning stops either when the error rate achieves an appropriate minimum or when the learning time overcomes a constant value. The networks, after training, can decide if the test signal is Early Aging State or Last Aging State or normal state.
Recently, the construction and plan of super-tall building is attention link of new town development or urban core regeneration. Super-tall Buildings have many advantages and a lot of affects in urban contexts. Also, construction of super-tall building is will be able to social problem like urban core's decline, loss of openspace, incompatible urban scape, traffic congestion of urban core. But, compares to super-tall buildings affects in urban contexts, there was not extra ordinary study about super-tall building by the urban scale approaches. Therefore, need about study materplan planning of the site which is made to meet super-tall building and urban contexts. There are two main processes in this study. First, to analyze the factors affect to masterplan planning of the super-tall building's site. Through the analyzed factors, classify type of super-tall buildings and identify the type's state. Second, to classify and set the elements of masterplan planning factor in the site. Identify the masterplan planning factor's state by deployment materplan planning factor set the current applied to the constructed super-tall buildings. Through this process, identified the recent trend and providied the basic elements of materplan planning of super-tall building's site.
교통상황 분류는 신호연동그룹 단위의 정주기식 제어 기법을 효율적으로 적용하기 위하여 TOD 계획을 수립하는데 핵심적인 기술이다. 본 논문에서는 신호연동그룹에 속하는 모든 교차로의 교통 자료 즉, 속도-교통량-밀도를 활용할 수 있는 딥 임베디드 클러스터링(Deep-Embedded Clustering:DEC) 기반 교통상황 분류 방법론을 제시하였다. 기존의 신호계획의 경우 교통량 기반으로 주요 교차로를 선정하고 해당 교차로의 교통자료를 이용하여 단편적인 신호계획을 하였으나, 본 논문에서 제시된 방법론의 경우 신호연동 그룹내 다수 교차로의 종합적인 교통특성에 따라 교통상황을 유연하게 분류하여 신호계획을 할 수 있는 기반을 제공하였다. 본 연구에서 제시된 방법론은 일반적인 군집화 방법론이 입력 자료의 차원이 증가함에 따라 겪는 차원의 저주 (Curse of dimensionality) 문제를 완화함으로써 신호연동그룹에 속하는 모든 신호교차로의 교통자료를 고려한 신호시간 계획 수립이 가능하며 기존의 특정교차로 및 교통량만을 이용한 교통상황 분류방법론의 단점을 극복할 수 있음을 보였다.
Traffic classification의 방법은 동적으로 변하는 application의 변화에 대처하기 위하여 페이로드나 port를 기반으로 하는 것에서 ML 알고리즘을 기반으로 하는 것으로 변하여 가고 있다. 그러나 현재의 ML 알고리즘을 이용한 traffic classification 연구는 offline 환경에 맞추어 진행되고 있다. 특히, 현재의 기존 연구들은 testing 방법으로 cross validation을 이용하여 traffic classification을 수행하고 있으며, traffic flow를 기반으로 classification 결과를 제시하고 있다. 본 논문에서는 testing방법으로 cross validation과 split validation을 이용했을 때, traffic classification의 정확도 결과를 비교한다. 또한 바이트를 기반으로 한 classification의 결과와 flow를 기반으로 한 classification의 결과를 비교해 본다. 본 논문에서는 J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, NaiveBayes와 같은 ML 알고리즘과 다양한 feature set을 이용하여 트래픽을 분류한다. 그리고 split validation을 이용한 traffic classification에 적합한 최적의 ML 알고리즘과 feature set을 제시한다.
이 논문에서는 대규모 작물 재배 지역의 작물 분류도의 조기 제작을 목적으로 분광학적 혼재를 줄이고, 과거 토지피복도의 작물 재배 패턴을 반영할 수 있는 계층적 분류 방법론을 제안하였다. 특히 작물 생육 주기로부터 다른 분광 특성을 고려한 계층적 분류 접근을 적용하고, 과거 작물 재배 패턴으로부터 추출된 시간적 문맥 정보를 함께 고려함으로써 분광 혼재가 두드러진 화소의 영향을 줄일 수 있다. 제안 분류 기법의 적용성을 평가하기 위해 미국 아이오와 주 전체를 대상으로 시계열 MODIS 250 m 정규식생지수 자료와 과거 crop data layer를 사용하는 사례 연구를 수행하였다. 사례 연구를 통해 다른 분류 단계와 과거 작물 재배 패턴을 고려함으로써 대상 지역의 주요 재배 작물이면서 분광학적 유사도가 두드러진 콩과 옥수수를 효과적으로 구분할 수 있었다. 그리고 분광 정보만을 이용한 분류 결과에 비해 제안 기법이 최소 7.68%p에서 최대 20.96%p의 향상된 분류 정확도를 보였다. 또한 분류 단계에서 시간적 문맥 정보를 결합함으로써 사용 NDVI 자료의 수에 영향을 덜 받는 가장 높은 분류 정확도(최대 전체 정확도: 86.63%)를 얻을 수 있었다. 따라서 제안 분류 기법은 주요 곡물 수입국의 대규모 작물 구분도의 조기 제작에 유용하게 사용될 수 있을 것으로 기대된다.
Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.
Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.406-412
/
2022
Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.
최근까지 장르나 무드 등의 정적 분류 기술자를 이용한 음악 정보 검색에 관한 다양한 연구가 진행되어 왔다. 정적 분류 기술자는 주로 음악의 다양한 내용적 특징에 기반하기 때문에 그러한 특징에 유사한 음악을 검색하는 데 효과적이다. 하지만 음악을 들었을 때 느끼게 되는 감정 내지 기분 전이를 이용하면 정적 분류 기술자보다 더 효과적이고 정교한 검색이 가능하다. 사람이 음악을 들었을 때 발생하는 감정 전이의 효과에 관한 연구는 현재까지 미비한 실정이다. 감정 전이의 효과를 체계적으로 표현할 수 있다면 기존의 음악 분류에 의한 검색에 비해 음악 추천 등의 새로운 응용에서 더 효과적인 개인화 서비스를 제공할 수 있다. 본 논문에서는 음악에 의한 인간 감정 전이를 표현하기 위한 감정 상태 전이 모델을 제안하고 이를 기반으로 새로운 음악 분류 및 추천 기법을 제안한다. 제안하는 모델의 개발을 위하여 다양한 내용 기반의 특징을 추출하였으며, 고차원 특징 벡터의 차원 감쇄를 위하여 NMF (Non-negative Matrix Factorization)를 사용하였다. 성능 분석을 위한 실험에서 SVM (Support Vector Machine)을 분류기로 사용한 실험에서 평균 67.54%, 최대 87.78%의 분류 정확도를 달성하였다.
미국 캔자스주 정부와 연방정부가 필요로 하는 상세한 지표피복 수치지도제작을 위해, Landsat Thematic Mapper 자료를 이용하여 캔자스주 전체를 대상으로 43가지로 분류된 식생군단(vegetation alliance) 수준의 자연식 생지도를 제작하였다. 지도제작 방법으로는 봄, 여름, 가을의 계절별 위성자료를 이용하여 두 단계 분류절차를 거치는 이른바 '하이브리드(hybrid)' 방식을 채택하였다. 이 접근 방법은 첫 단계로 unsupervised classification을 이용, 자연녹지를 농경지로부터 분리해 낸 다음. 두 번째 단계에서 supervised classification, 현장확인조사. 그리고 분류 후 다양한 보강자료를 이용하여 최종적으로 자연식생을 구분ㆍ분류해 내는 것이다. 정확도 평가는 세 가지 분류 수준에서 실행되었는데, 이는 앤더슨 분류단계 I(Anderson level I), 식생군계(vegetation formation), 그리고 식생군단 수준을 포함한다. 확인결과 전반적인 정확도는 51.7%에서 89.4%에 이르는 것으로 조사되었다.
The purpose of this paper is to classify VOC gases by emulating the characteristics found in biological olfaction. For this purpose, we propose new signal processing method based a polymeric chemical sensor array consisting of 4096 sensors which is created by NEUROCHEM project. To remove unstable sensors generated in the manufacturing process of very large scaled chemical sensor array, we used discrete wavelet transformation and cosine similarity. And, to remove the supernumerary redundancy, we proposed the method of selecting candidates of representative sensor representing sensors with similar features by Fuzzy c-means algorithm. In addition, we proposed an improved algorithm for selecting representative sensors among candidates of representative sensors to better enhance classification ability. However, Classification for very large scaled sensor array has a great deal of time in process of learning because many sensors are used for learning though a redundancy is removed. Throughout experimental trials for classification, we confirmed the proposed method have an outstanding classification ability, at transient state as well as steady state.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.