• Title/Summary/Keyword: Starting Angle

Search Result 185, Processing Time 0.026 seconds

Joint Development of Park and Green Space - A New Pattern and Key Points for Developing Parks and Greens Space in Shanghai-

  • Xiang Gao;Deshao You
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.57-64
    • /
    • 2004
  • Nowadays the parks in Shanghai tend to develop towards two directions. Small and medimn parks are being gradually transformed from closed management to open management, while large ones emphasize their nature of theme and nature of functions. Simultaneously, the number of large and open public green spaces has been significantly increased. Although the public green space does not adopt the management pattern for parks, there is almost no difference between public green space and ordinary parks so far as the functions and scales are concerned. Due to the fact that there is no obvious boundary between a public park and a public green space, this paper raises a suggestion to coordinate continuously their management and functions so that the distribution of and the connection between the urban green spaces can be more rational and more definite and a sound green network can be formed. Starting from the viewpoint of emphasizing accessibility to green spaces and enhancing the angle of linking green spaces, we aim at transforming a park system to a multifunctional green system, extending the effects and service radius of large green spaces, and strengthening the internal connections with the surrounding areas so that a high-quality green space can be formed with the connection of the green space network.

  • PDF

A Study on Startup-Characteristic of Sensorless Controlled IPMSM Employing Sliding Mode Observer (슬라이딩 모드 관측기를 이용한 IPMSM의 센서리스 제어의 기동특성에 관한 연구)

  • Kim, Sang-Hun;Kwon, Soon-Jae;Kim, Marn-Go;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • This paper presents the improvement of start-up characteristic of sensorless controlled IPMSM(Interior Permanent Magnet Synchronous Motor) with SMO(Sliding Mode Observer). It is difficult to utilize the rotor position information at starting point for the back EMF estimation based sensorless control. For this reason, open loop control is normally used during start-up period. However, changing from open loop to closed loop control might bring a problem on the transient characteristics for difference load conditions. To solve this problem, we add another rotor angle controller. Simulation results and experimental results are presented to verify proposed method.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

Zoom Lens Design for a 10x Slim Camera using Successive Procedures

  • Park, Sung-Chan;Lee, Sang-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.518-524
    • /
    • 2013
  • This study presents a new design method for a zoom lens, in which real lens groups are designed successively to combine to form a lens modules zoom system. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.2 to 39.9 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. After obtaining the lens module zoom system, the real lens groups are successively, not separately, designed to get a zoom lens system. Compared to the separately designed real lens groups, this approach can give a better starting zoom lens and save time. The successively designed groups result in a zoom system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a compact zoom system with a depth of 12 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a mobile zoom camera having high zoom ratio of 10x.

Preparation and Structure of Re$({\equiv}NC_6H_5)(CO)(PPh_3)Cl_3$

  • Young-Woong Kim;Jun-Ho Jung;Soon W. Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.150-153
    • /
    • 1994
  • By treating mer, trans-Re(${\equiv}NC_6H_5)(PPh_3)_2Cl_3$, Ⅰ, with 5 atm of CO at room temperature for 52 h, fac-Re(${\equiv}NC_6H_5)(CO)(PPh_3)Cl_3$, Ⅱ, was obtained as dark green precipitates in 81% yield. The crystal structure of Ⅱ was determined through X-ray diffraction. Ⅱ crystallizes in the monoclinic system, space group $P2_1/n$ with cell parameters a=9.740 (2) ${\AA}$, b=16.210 (5) ${\AA}$, c=16.192 (6) ${\AA}$, ${\beta}$=97.50 $(2)^{\circ}$, and Z=4. Least-squares refinement of the structure led to a R$(R_w)$ factor of 0.030 (0.036) for 2878 unique reflections of I>3${\sigma}(I)$ and for 241 variables. In comparison to the starting material Ⅰ, the bond distance of Re-N became longer from 1.726 (6) to 1.736 (5) ${\AA}$ and the bond angle of Re-N-C(Ph) became smaller from 172.6 (6) to 167.0 $(2)^{\circ}$, indicating that the Re-N bond in Ⅱ is weakened and has a less triple-bond character than that in Ⅰ.

Development of Control System for 2MW Direct Drive Wind Turbine (2MW급 직접구동형 풍력터빈 제어시스템 개발)

  • Moon, Jun-Mo;Jang, Jeong-Ik;Yoon, Kwang-Yong;Joe, Gwang-Myung;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The purpose of this paper is to describe the control system for optimal performance of 2MW gearless PMSG wind turbine system, and to afford some techniques of the algorithm selection and design optimization of the wind turbine control system through analysis of load calculation and control characteristic. Wind turbine control system is composed of the main control system and remote control and monitoring system. The main control system is industrial PC based controller, and the remote control and monitoring system is a server based computer system. The main control system has a supervisory control of the wind turbine with operation procedures and power-speed control through the torque control by pitch angle. There are some applications to optimize the wind turbine system at the starting mode with increasing of rotor speed, and cut-in operating mode to prevent trundling cut-in and cut-out, a gain scheduling of pitch PID controller, torque scheduling and limitation of generation power by temperature limitation or remote command by remote control and monitoring system. Also, the server operation program of the remote control and monitoring system and the design of graphical display are described in this paper.

Simulation of Low-Grazing-Angle Coherent Sea Clutter (Low Grazing Angle에서의 코히어런트 해상 클러터 시뮬레이션)

  • Choi, Sang-Hyun;Song, Ji-Min;Jeon, Hyeon-Mu;Chung, Yong-Seek;Kim, Jong-Mann;Hong, Seong-Won;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.615-623
    • /
    • 2018
  • The probability density function(PDF) for the amplitude of the reflectivity of low-grazing-angle sea clutter has generally been modeled by a compound-Gaussian distribution, rather than by the Rayleigh distribution, owing to the intensity variation of each clutter patch over time. The texture component forming the reflectivity has been simulated by combining Gamma distribution and memory-less nonlinear transformation(MNLT). On the other hand, there is no typical method available that can be used to simulate the speckle component. We first review Watt's method, wherein the speckle is simulated starting from the Doppler spectrum of the received echoes that is modeled as having a Gaussian shape. Then, we introduce a newly proposed method. The proposed method simulates the speckle by manipulating a clutter covariance matrix through the Cholesky decomposition after minimizing the effect of adjacent clutter patches using an equalizer. The feasibility of the proposed method is validated through simulation, wherein the results from two methods are compared in terms of the Doppler spectrum and the correlation function.

Numerical Design of Double Quantum Coherence Filter for the Detection of Myo-Inositol In vivo (인체 내 myo-Inositol 검출을 위한 수치해석적 이중양자 필터 디자인)

  • Lee, Yun-Jung;Jung, Jin-Young;Noh, Hyung-Joon;Yu, Ung-Sik;Kim, Hyeon-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • Purpose : A numerical method of designing a multiple quantum filter (MQF) is presented for the optimum detection of myo-inositol (mI), an important brain metabolite, by using in vivo proton nuclear magnetic resonance spectroscopy ($^1$-HMRS). Materials and Methods : Starting from the characterization of the metabolite, the filter design includes the optimization of the sequence parameters such as the two echo times (TEs), the mixing time (TM), and the flip angle and offset frequency of the 3rd $90^{\circ}$ pulse which converts multiple quantum coherences (MQCs) back into single quantum coherences (SQCs). The optimized filter was then tested both in phantom and in human brains. Results : The results demonstrate that the proposed MQF can improve the signal-to-background ratio of the target metabolite by a factor of more than three by effectively suppressing the signal from the background metabolites. Conclusion : By incorporating a numerical method into the design of MQFs in $^1$-HMRS the spectral integrity of a target metabolite, in particular, with a complicated spin system can be substantially enhanced.

  • PDF

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System (절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi;Lee, Dahye
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.