• Title/Summary/Keyword: Start of Combustion(SOC)

Search Result 7, Processing Time 0.02 seconds

Start of Combustion Detection Method for Gasoline Homogeneous Charge Compression Ignition Engine (가솔린 균일 예혼합 압축착화 엔진의 착화시점 검출)

  • Choe, Doo-Won;Lee, Min-Kwang;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.151-158
    • /
    • 2008
  • Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion is a new combustion concept. Unlike the conventional internal combustion engine, the premixed fuel mixture with high residual gas rate is auto-ignited and burned without flame propagation. There are several operating factors which affect HCCI combustion such as start of combustion (SOC), residual gas fraction, engine rpm, etc. Among these factors SOC is a critical factor in the combustion because it affects exhaust gas emissions, engine power, fuel economy and combustion characteristics. Therefore SOC of gasoline HCCI should be controlled precisely, and SOC detection should be preceded SOC control. This paper presents a control oriented SOC detection method using 50 percent normalized difference pressure. Normalized difference pressure is defined as the normalized value of difference pressure and difference pressure is difference between the in-cylinder firing pressure and the motoring pressure. These methods were verified through the HCCI combustion experiments. The SOC detection method using difference pressure provides a fast and precise SOC detection.

State Estimation Technique for VRLA Batteries for Automotive Applications

  • Duong, Van Huan;Tran, Ngoc Tham;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.238-248
    • /
    • 2016
  • The state-of-charge (SOC) and state-of-health (SOH) estimation of batteries play important roles in managing batteries for automotive applications. However, an accurate state estimation of a battery is difficult to achieve because of certain factors, such as measurement noise, highly nonlinear characteristics, strong hysteresis phenomenon, and diffusion effect of batteries. In certain vehicular applications, such as idle stop-start systems (ISSs), significant errors in SOC/SOH estimation may lead to a failure in restarting a combustion engine after the shut-off period of the engine when the vehicle is at rest, such as at a traffic light. In this paper, a dual extended Kalman filter algorithm with a dynamic equivalent circuit model of a lead-acid battery is proposed to deal with this problem. The proposed algorithm adopts a battery model by taking into account the hysteresis phenomenon, diffusion effect, and parameter variations for accurate state estimations of the battery. The validity of the proposed algorithm is verified through experiments by using an absorbed glass mat valve-regulated lead-acid battery and a battery sensor cable for commercial ISS vehicles.

A Basic Experimental Study on Potential Operating Range in Gasoline Direct-Injection Compression Ignition (GDICI) Engine (가솔린 직접분사식 압축착화 엔진의 가능한 운전영역에 관한 기초실험 연구)

  • Cha, Junepyo;Yoon, Sungjun;Lee, Seokhwon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.33-35
    • /
    • 2013
  • The present work is an experimental investigation on potential operating range using directly injected gasoline fuel in a single-cylinder compression ignition (CI) engine. The objectives of present study were to apply auto-ignited combustion to gasoline fuel and to evaluate potential operating range. In order to auto-ignite gasoline fuel in CI engine, the fuel direct-injection system and the intake air system were modified that a flow rate and temperature of intake air were regulated. The heat-release rate (HRR), net indicated mean effective pressure (IMEP), start of combustion (SOC), and combustion duration were derived from in-cylinder pressure data in a test engine, which has 373.33cc displacement volume and 17.8 compression ratio. The exhaust emission characteristics were obtained emission gas analyzer and smoke meter on the exhaust line system.

  • PDF

A Study on Engine Performance Characteristics of a Homogeneous Charge Compression Ignition(HCCI) Engine According to Exhaust Gas Recirculation(EGR) (EGR(배기재순환)에 따른 HCCI (균질혼합압축착화)기관의 엔진성능특성에 관한 연구)

  • Choi, Gyeung-Ho;Han, Sung-Bin;Dibble, Robert W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.857-862
    • /
    • 2004
  • HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NOx and particulate matter(PM). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

A Study on the Effects of EGR on Engine Performance and Emissions of a HCCI(Homogeneous Charge Compression Ignition) Engine (HCCI 엔진에서 엔진성능 및 배출에 미치는 EGR의 영향)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1630-1636
    • /
    • 2003
  • Automobile companies and research institutions in leading automobile-manufacturing nations have recently been very active with research regarding the HCCI engine for use in future vehicles. Because HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency found in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NO$_{x}$ and PM (particulate matter). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. for this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders. The experimental study of the effects of EGR rate on various gas emissions, engine performance, etc. should prove to be a valuable source of information for the development of the HCCI engine.e.

Influence of Propane and Butane on Engine Performance in a Homogeneous Charge Compression Ignition(HCCI) Engine (균질혼합압축점화기관에서 프로판과 부탄연료가 기관성능에 미치는 영향)

  • Choi Gyeung Ho;Kim Ji Moon;Han Sung Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.417-423
    • /
    • 2005
  • This paper describes the engine performance of a Homogeneous Charge Compression Ignition(HCCI) engine according to Exhaust Gas Recirculation(EGR), cylinder-to-cylinder, fuel of propane and butane. HCCI engines are being considered as a future alternative for diesel and gasoline engines. HCCI engines have the potential for high efficiency, very low NOx emissions and very low particulate matter(PM). On experimental work, we have done an evaluation of operating conditions in a 4-cylinder compression engine. The engine has been run with propane and butane fuels at a constant speed of 1800rpm. This work is intended to investigate the HCCI operation of the engine in this configuration that has been modified from the base diesel engine. The performance and emissions of the engine are presented. In this paper, the start of combustion(SOC) is defined as the $50{\%}$ point of the peak rate of heat release. SOC is delayed slightly with increasing EGR. As expected, NOx emissions were very low for all EGR range and nbuned HC and CO emission levels were high. CO and HC emissions are lower with using propane than butane as fuels of HCCI engines.

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.