• 제목/요약/키워드: Stars: Kinematics

검색결과 61건 처리시간 0.023초

The Molecular Gas Kinematics of HI Monsters

  • Kim, Dawoon E.;Chung, Aeree;Yun, Min S.;Iono, Daisuke
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.33.2-33.2
    • /
    • 2020
  • Our HI monster sample is a set of local HI-rich galaxies identified by the ALFALFA survey (Arecibo Legacy Fast Survey ALFA) at z<0.08. Intriguingly, they are also found with a relatively large molecular gas reservoir compared to the galaxies with similar stellar mass and color, yet their star formation rate is quite comparable to normal spirals. This makes our HI monsters good candidates of galaxies in the process of gas accretion which may lead to the stellar mass growth. One feasible explanation for their relatively low star formation activity for a given high cool gas fraction is the gas in monsters being too turbulent to form stars as normal spirals. In order to verify this hypothesis, we probe the molecular gas kinematics of 10 HI monsters which we observed using the Atacama Large Millimeter/sub-millimeter Array (ALMA). We utilize the tilted ring model to investigate what fraction of the molecular gas in the sample is regularly and smoothly rotating. In addition, we model the molecular gas disk using the GALMOD package of the Groningen Image Processing System (GIPSY) and compare with the observations to identify the gas which is offset from the 'co-planar differential rotation'. Based on the results, we discuss the possibility of gas accretion in the sample, and the potential origin of non-regularly rotating gas and the inefficient star formation.

  • PDF

FUNS - Filaments, the Universal Nursery of Stars. I. Physical Properties of Filaments and Dense Cores in L1478

  • Chung, Eun Jung;Kim, Shinyoung;Soam, Archana;Lee, Chang Won
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.45.1-45.1
    • /
    • 2018
  • Formation of filaments and subsequent dense cores in ISM is one of the essential questions to address in star formation. To investigate this scenario in detail, we recently started a molecular line survey namely 'Filaments, the Universal Nursery of Stars (FUNS)' toward nearby filamentary clouds in Gould Belt using TRAO 14m single dish telescope equipped with a 16 multi-beam array. In the present work, we report the first look results of kinematics of a low mass star forming region L1478 of California molecular cloud. This region is found to be consisting of long filaments with a hub-filament structure. We performed On-The-Fly mapping observations covering ~1.1 square degree area of this region using C18O(1-0) as a low density tracer and 0.13 square degree area using N2H+(1-0) as a high density tracer, respectively. CS (2-1) and SO (32-21) were also used simultaneously to map ~290 square arcminute area of this region. We identified 10 filaments applying Dendrogram technique to C18O data-cube and 13 dense cores using FellWalker and N2H+ data set. Basic physical properties of filaments such as mass, length, width, velocity field, and velocity dispersion are derived. It is found that filaments in L~1478 are velocity coherent and supercritical. Especially the filaments which are highly supercritical are found to have dense cores detected in N2H+. Non-thermal velocity dispersions derived from C18O and N2H+ suggest that most of the dense cores are subsonic or transonic while the surrounding filaments are transonic or supersonic. We concluded that filaments in L~1478 are gravitationally unstable which might collapse to form dense cores and stars. We also suggest that formation mechanism can be different in individual filament depending on its morphology and environment.

  • PDF

LONG-SLIT SPECTROSCOPY OF PARSEC-SCALE JETS FROM DG TAURI

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.113-123
    • /
    • 2015
  • We present observational results from optical long-slit spectroscopy of parsec-scale jets of DG Tau. From HH 158 and HH 702, the optical emission lines of Hα, [O i] λλ6300, 6363, [N ii] λλ6548, 6584, and [S ii] λλ6716, 6731 are obtained. The kinematics and physical properties (i.e., electron density, electron temperature, ionization fraction, and mass-loss rate) are investigated along the blueshifted jet up to 650′′ distance from the source. For HH 158, the radial velocity ranges from −50 to −250 km s−1. The proper motion of the knots is 0.′′196 − 0.′′272 yr−1. The electron density is ∼104 cm−3 close to the star, and decreases to ∼102 cm−3 at 14′′ away from the star. Ionization fraction indicates that the gas is almost neutral in the vicinity of the source. It increases up to over 0.4 along the distance. HH 702 is located at 650′′ from the source. It shows ∼ −80 km s−1 in the radial velocity. Its line ratios are similar to those at knot C of HH 158. The mass-loss rate is estimated to be about ∼ 10−7 M yr−1, which is similar to values obtained from previous studies.

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

High resolution Infrared spectroscopy of Planetary Nebula with IGRINS

  • Yu, Young Sam
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.93.2-93.2
    • /
    • 2014
  • Planetary nebulae (PN) are the last stages of evolution of intermediate mass (1-8 Msolar) stars. Their shapes are thought to result from interactions between the present-day, fast (emerging white dwarf) and previously ejected, slow (red giant) stellar winds. The observation of young, bright PN, NGC7027 and BD+30 3639, was made on July 7, 2014 using the 2.7m Harlan J. Smith telescope at the McDonald Observatory. IGRINS with high spatial (0.27") and high spectral ($7.5km\;s^{-1}$) resolution will provide more nebular lines and excitation/abundances to constrain the morphology and kinematics of the Nebula and the PDRs. Combined with other archival data (X-ray, 2MASS, WISE, Spitzer, Herschel) for PN, high-resolution IR spectroscopy will yield insight into poorly understood aspects of PN morphologies and the late stages of binary star evolution.

  • PDF

Optical Long-slit Spectroscopy of Parsec-scale Jets

  • 오희영;표태수;육인수;김강민;이성호;박병곤
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.55.2-55.2
    • /
    • 2013
  • We present the observational study of parsec-scale jets from YSOs reaching lengths of several arc-minutes. The medium-resolution spectroscopic data were obtained between 6000 - $7000{\AA}$ with BOAO long-slit spectrograph. By performing multi-position observation, we investigated the physical variation of the jets and the ambient gas along the whole path of the jets. The flux, electron density, ionization fraction, and electron temperature are discussed with the estimated line ratios between from [OI], [NII], $H{\alpha}$ and [SII] emission lines. This study carried out with more than 8 jets of YSOs including low- to intermediate-mass stars. We also briefly discuss the kinematics of the outflows using spatial and spectroscopic data.

  • PDF

MONTE-CARLO SIMULATION OF NEUTRON STAR ORBITS IN THE GALAXY

  • TAANI, ALI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.583-584
    • /
    • 2015
  • In this paper, the numerical results concerning different orbits of a 3D axisymmetric non-rotating galactic potential are presented. We use $Paczy{\acute{n}}ski^{\prime}s$ gravitational potential with different birth velocity distributions for the isolated old Neutron Star (NS) population. We note some smooth non-constant segments corresponding to regular orbits as well as the characterization of their chaoticity. This is strongly related to the effect of different kick velocities due to supernovae mass-loss and natal kicks to the newly-formed NS. We further confirm that the dynamical motion of the isolated old NSs in the gravitational field becomes obvious, with some significant diffraction in the symmetry of their orbital characteristics.

THE GALACTIC-SCALE MOLECULAR OUTFLOWS IN STARBURST GALAXIES NGC 2146 AND NGC 3628

  • TSAI, AN-LI;MATSUSHITA, SATOKI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.499-502
    • /
    • 2015
  • Starburst galaxies have strong star formation activity and generate large scale outflows which eject a huge amount of gas mass. This process affects galaxy activity, and therefore, the detailed study of nearby starburst galaxies could provide valuable information for the study of distant ones. So far there have been only a few studies of galactic-scale molecular outflows due to the sensitivity limitation of telescopes. Our study provides two nearby examples, NGC 2146 and NGC 3628. We used Nobeyama Millimeter Array (NMA) CO(1-0) data, Chandra soft X-ray data, and NMA 3 mm data to study the kinematics of molecular outflows, their interaction with ionized outflows, and the star forming activity in the starburst region. We found that the gas ejected through molecular outflows is much more significant than that used to form stars.

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF

A kinematic study of young stars in Monoceros OB1 and R1 associations

  • Lim, Beomdu;Naze, Yael;Hong, Jongsuk;Yoon, Sungyong;Lee, Jinhee;Hwang, Narae;Park, Byeong-Gon;Lee, Jeong-Eun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.50.1-50.1
    • /
    • 2021
  • The Gaia mission opens a new window to study the kinematics and dynamics of young stellar systems in detail. The kinematic properties of young stars provide vital constraints on the formation process of their host systems. Here, we present a kinematic study of the two associations Monoceros OB1 (Mon OB1) and R1 (Mon R1). Member candidates are first selected from the published list of member candidates, a compilation of OB star catalogues, and the classification of young stellar objects with the AllWISE data. According to the conventional wisdom, we selected a total of 728 members with similar proper motions at almost the same distance. Mon OB1 and Mon R1 have high levels of substructures that are also kinematically distinct. We identify six stellar groups in these associations, of which five show a pattern of expansion. In addition, the signature of rotation is found in two stellar groups of Mon OB1. Star formation history is inferred from a color-magnitude diagram. As a result, star formation in Mon OB1 has been sustained for several million years, while Mon R1 formed at almost the same epoch as the recent star formation in Mon OB1. Some old members in the outskirt of Mon OB1 have outward motions, which rules out the previously proposed outside-in star formation scenario. Star-forming regions including Mon OB1 and Mon R1 are found along a large arc-like gas structure. Hence, the formation of these two associations may originate from the hierarchical star formation along filaments in a turbulent molecular cloud.

  • PDF