• 제목/요약/키워드: Stars: Kinematics

검색결과 61건 처리시간 0.021초

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

Binary Nature Revealed in Circumstellar Spiral-Shell Patterns

  • Kim, Hyosun;Hsieh, I-Ta;Liu, Sheng-Yuan;Taam, Ronald E.
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.56.1-56.1
    • /
    • 2014
  • With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. It is, however, not generally recognized that the binary induced pattern, vertically extended from the orbital plane, exhibits a ring-like pattern with an inclined viewing angle. I will first review the binary-induced spiral-shell patterns on the AGB circumstellar envelopes with the effect of inclination angle with respect to the orbital plane, of which large inclination cases reveal incomplete ring-like patterns. I will describe a method of extracting such spiral-shell from the gas kinematics of an incomplete ring-like pattern to place constraints on the characteristics of the (unknown) central binary stars. This first success may open the possibility of connecting the ring-like patterns commonly found in the AGB circumstellar envelopes and in the outer parts of (pre-)planetary nebulae and pointing to the conceivable presence of central binary systems, which may give a clue for the onset of asymmetrical planetary nebulae.

  • PDF

LOW-MASS STAR FORMATION: CURRENT STATUS AND FUTURE PROGRESS WITH ALMA

  • Tafalla, Mario
    • 천문학논총
    • /
    • 제33권3호
    • /
    • pp.45-57
    • /
    • 2018
  • Low-mass star-formation studies deal with the birth of individual solar-type stars as it occurs in nearby molecular clouds. While this isolated mode of star formation may not represent the most common form of stellar birth, its study often provides first evidence for the general ingredients of star formation, such as gravitational infall, disk formation, or outflow acceleration. Here I briefly review the current status and the main challenges in our understanding of low-mass star formation, with emphasis in the still mysterious pre-stellar phase. In addition to presenting by-now classical work, I also show how ALMA is starting to play a decisive role driving progress in this field.

STARS: A 3D GRID-BASED MONTE CARLO CODE FOR RADIATIVE TRANSFER THROUGH RAMAN AND RAYLEIGH SCATTERING WITH ATOMIC HYDROGEN

  • Chang, Seok-Jun;Lee, Hee-Won
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.169-179
    • /
    • 2020
  • Emission features formed through Raman scattering with atomic hydrogen provide unique and crucial information to probe the distribution and kinematics of a thick neutral region illuminated by a strong far-ultraviolet radiation source. We introduce a new 3-dimensional Monte-Carlo code in order to describe the radiative transfer of line photons that are subject to Raman and Rayleigh scattering with atomic hydrogen. In our Sejong Radiative Transfer through Raman and Rayleigh Scattering (STaRS) code, the position, direction, wavelength, and polarization of each photon is traced until escape. The thick neutral scattering region is divided into multiple cells with each cell being characterized by its velocity and density, which ensures flexibility of the code in analyzing Raman-scattered features formed in a neutral region with complicated kinematics and density distribution. To test the code, we revisit the formation of Balmer wings through Raman scattering of the far-UV continuum near Lyβ and Lyγ in a static neutral region. An additional check is made to investigate Raman scattering of O vi in an expanding neutral medium. We find a good agreement of our results with previous works, demonstrating the capability of dealing with radiative transfer modeling that can be applied to spectropolarimetric imaging observations of various objects including symbiotic stars, young planetary nebulae, and active galactic nuclei.

High-resolution mass models of the Large Magellanic Cloud

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.71.1-71.1
    • /
    • 2021
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus mass distribution in the galaxy including both baryons and dark matter. We decompose all the line-of-sight velocity profiles of the combined HI data cube of the LMC, taken from the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes with an optimal number of Gaussian components. For this, we use a novel tool, the so-called BAYGAUD which performs profile decomposition based on Bayesian MCMC techniques. From this, we disentangle turbulent non-ordered HI gas motions from the decomposed gas components, and produce an HI bulk velocity field which better follows the global circular rotation of the galaxy. From a 2D tilted-ring analysis of the HI bulk velocity field, we derive the rotation curve of the LMC after correcting for its transverse, nutation and precession motions. The dynamical contributions of baryons like stars and gaseous components which are derived using the Spitzer 3.6 micron image and the HI data are then subtracted from the total kinematics of the LMC. Here, we present the bulk HI rotation curve, the mass models of stars and gaseous components, and the resulting dark matter density profile of the LMC.

  • PDF

The Chemical Abundances of Hypervelocity Stars in the Milky Way Disk

  • Yeom, Bum-Suk;Lee, Young Sun;Kim, Young Kwang;Han, Doo-Ri
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.77.2-77.2
    • /
    • 2016
  • We present preliminary results of the analysis of chemical abundances for seven hypervelocity star (HVS) candidates. These objects are G and K dwarfs in the Galactic disk selected from the Sloan Extension for Galactic Understanding and Exploration. Unlike other HVSs discovered thus far, their stellar orbits and kinematics suggest that they do not originate in the Galactic center or in an accretion event. These factors imply yet-unknown mechanisms that give rise to these kinematically-extreme disk stars. In order to study in detail their progenitors and possible formation mechanisms, we obtained spectra of these stars at a resolving power of R~6000, with the Dual Imaging Spectrograph at the Apache Point Observatory. We derive the abundances of chemical elements, C, Mg, Ca, Ti, Cr, Fe, and Ba from the observed spectra, using MOOG. We compare them with the ones of typical Galactic disk stars and discuss discrepancies between them to search for clues to their origin.

  • PDF

The development of field galaxies in the first half of the cosmic history

  • Park, Minjung;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.35.3-36
    • /
    • 2018
  • One of the most prevalent knowledge about disk galaxies, which dominate the population of the local Universe, is that they consist of stellar structures with different kinematics, such as thin disk, bulge, and halo. Therefore, investigating when and how these components develop in a galaxy is the key to understanding the evolution of galaxies. Using the NewHorizon simulation, we can resolve the detailed structures of galaxies, in the field environment, from the early Universe where star formation and mergers were most active. We first decompose stellar particles in a galaxy into a disk and a dispersion-dominated, spheroidal, component based on their orbits and then see how these components evolve in terms of mass and structure. At high redshift z~3, galaxies are mostly dispersion-dominated as stars are formed misaligned with the galactic rotational axis. At z=1~2, massive galaxies start to dominantly form disk stars, while less massive galaxies do much later. Furthermore, massive galaxies are forming thinner and larger disks with time, and the preexistent disks are heated or even disrupted to become a part of dispersion-dominated component. Thus, the mass growth of spheroidal components at later epochs is dominated by disrupted stars with disk origins and accreted stars at large radii.

  • PDF

Systemic search for gas outflows in AGNs and star-forming galaxies

  • Woo, Jong-Hak;Son, Donghoon;Bae, Hyun-Jin
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.35.2-35.2
    • /
    • 2016
  • We present a census of AGN-driven gas outflows based on the kinematics of ionized gas and stars, using a large sample of ~11,000 emission line galaxies at z < 0.3, selected from SDSS. First, a broad correlation between gas and stellar velocity dispersions indicates that the bulge gravitational potential plays a main role in determining the ionized gas kinematics. However, the velocity dispersion of the [OIII] emission line is larger than stellar velocity dispersion by a factor of 1.3-1.4, suggesting that the non-gravitational (non-virial) component, i.e., outflows, is almost comparable to the gravitational component. Second, gas-to-stellar velocity dispersion ratio increases with both AGN luminosity and Eddington ratio, suggesting that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the fraction of AGNs with a signature of the non-gravitational kinematics, steeply increases with AGN luminosity and Eddington ratio, while the majority of luminous AGNs presents the non-gravitational kinematics in the [OIII] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [OIII] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs. We will discuss the implication of these results for AGN feedback in the local universe.

  • PDF

Spatial distrbibution of star formation in extremely strong $H{\alpha}$ emitters

  • Shim, Hyunjin;Chary, Ranga Ram
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.65.1-65.1
    • /
    • 2014
  • We present Palomar/SWIFT integral field spectroscopy of z~0.2 strong $H{\alpha}$ emitters identified in the Sloan Digital Sky Survey. The large Halpha equivalent widths as well as the huge specific star formation rates of these galaxies are comparable with that of z>4 Lyman break galaxies, thus understanding the gas kinematics and the distribution of massive stars in these systems will help to obtain a better understanding of high-redshift star forming environments and the growth of massive galaxies. We measure the velocity dispersion across the entire galaxy, estimate the number density and the spatial distribution of massive stars from the emission line morphologies. The role of minor mergers in powering star formation is investigated as an alternative to cold flow driven star formation.

  • PDF

EVOLUTION OF ORBIT AND ROTATION OF A PSEUDO-SYNCHRONOUS BINARY SYSTEM ON THE MAIN SEQUENCE

  • Li, Lin-Sen
    • 천문학회지
    • /
    • 제51권1호
    • /
    • pp.1-4
    • /
    • 2018
  • We study the pseudo-synchronous orbital motion of a binary system on the main sequence. The equations of the pseudo-synchronous orbit are derived up to $O(e^4)$ where e is the eccentricy of the orbit. We integrate the equations to present their solutions. The theoretical results are applied to the evolution of the orbit and spin of the binary star Y Cygni, which has a current eccentricity of $e_0\;=\;0.142$. We tabulate our numerical results for the evolution of the orbit and spin per century. The numerical results for the semi-major axes and rotational angular velocities in the evolutional time scales of three stages (synchronization, circularization, and collapse time scale) are also tabulated. Synchronization is achieved in about $5{\times}10^3\;years$ followed by circularization lasting about $1{\times}10^5\;years$ before decaying in $2{\times}10^5\;years$.