• Title/Summary/Keyword: Star Models

Search Result 213, Processing Time 0.022 seconds

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

PHOTOMETRIC EVOLUTION OF GALAXIES: STAR FORMATION RATE AND HUBBLE SEQUENCE

  • Ann, Hong-Bae;Lee, Chang-Won;Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 1991
  • We construct a simple photometric evolution model of galaxies based on the evolutionary population synthesis. In our models an exponentially decreasing SFR with a power law IMF is used to compute the UBV colors of galaxies from ellipticals to late type spirals. It is shown that the integrated colors of galaxies with different Hubble type can be explained by one parameter, SFR.

  • PDF

HISTORY OF STAR FORMATION OF EARLY TYPE GALAXIES FROM INTEGRATED LIGHT: STELLAR AGES AND ABUNDANCES

  • Schiavon, Ricardo P.
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • I briefly review what has been learned from determinations of mean stellar ages and abundances from integrated light studies of early-type galaxies, and discuss some new questions posed by recent data. A short discussion of spectroscopic ages is presented, but the main focus of this review is on the abundances of Fe, Mg, Ca, N, and C, obtained from comparisons of measurements taken in integrated spectra of galaxies with predictions from stellar population synthesis models.

Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC)

  • Lee, Seokho;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2017
  • Protoplanetary disks (PPDs) are a natural consequence of star formation and play crucial roles in planet formation. Atacama Large Millimeter/submillimeter Array (ALMA) has provided sub-mm data for the PPDs with a high angular resolution and sensitivity, and it makes us enable to study PPDs in detail. We have developed Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC), which consists of a self-consistent thermo-chemical model and line and continuum radiative transfer models, in order to interpret and predict the ALMA observations for PPDs. In this talk, we introduce capabilities of PUREC.

  • PDF

PHOTOMETRIC EVOLUTION OF ELLIPTICAL GALAXIES

  • JUNG HEE;LEE SEE-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.177-190
    • /
    • 1994
  • We have examined the photometric evolution of elliptical galaxies, using stellar evolutionary models covering the wide ranges of metallicity and mass, and the different IMFs (simple IMP & time-dependent bimodal IMF). The model with a time-dependent bimodal IMF can reproduce the observed integrated magnitudes and colors at all wavelengths. The computed model shows that the star formation in elliptical galaxies is still going on, although the number of newly born stars is very small. The chemical evolutionary effect is clearly seen in the C-M diagram of computed elliptical galaxies.

  • PDF

THERMAL MODELS AND FAR INFRARED EMISSION OF ASTEROIDS

  • KIM SAM;LEE HYUNG MOK;NAKAGAWA TAKAO;HASEGAWA SUNAO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • ASTRO-F /FIS will carry out all sky survey in the wavelength from 50 to 200 ${\mu}m$. At far infrared, stars and galaxies may not be good calibration sources because the IR fluxes could be sensitive to the dust shell of stars and star formation activities of galaxies. On the other hand, asteroids could be good calibration sources at far infrared because of rather simple spectral energy distribution. Recent progresses in thermal models for asteroids enable us to calculate the far infrared flux fairly accurately. We have derived the Bond albedos and diameters for 559 asteroids based on the IRAS and ground based optical data. Using these thermal parameters and standard thermal model, we have calculated the spectral energy distributions of asteroids from 10 to 200 ${\mu}m$. We have found that more than $70\%$ of our sample asteroids have flux errors less than $10\%$ within the context of the best fitting thermal models. In order to assess flux uncertainties due to model parameters, we have computed SEDs by varing external parameters such as emissivity, beaming parameter and phase integral. We have found that about 100 asteroids can be modeled to be better than $5.8\%$ of flux uncertainties. The systematic effects due to uncertainties in phase integral are not so important.

Observational Properties of Wolf-Rayet stars and Type Ib/Ic supernova progenitors

  • Jung, Moo-Keon;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.3-42.3
    • /
    • 2020
  • We investigate the observational properties of Wolf-Rayet stars, suggest the constraint of their mass-loss rate and apply our results to the observed progenitor candidates of Type Ib/Ic supernovae (iPTF13bvn and SN 2017ein). For this purpose, we adopt the WR star models with various mass-loss rates and wind terminal velocities. We obtain the high resolution spectra of those models at the pre-supernova phase using the radiative transfer code CMFGEN. We verify the optically faint property of SN Ic progenitors and show that the optical faintness is mainly originated by the high effective temperature at the photosphere. We also show that a simple analytic model for WR winds using a constant opacity can roughly predict the photospheric parameters. We show that the change of the mass-loss rate and the terminal wind velocity critically affects the optical luminosity. We find the optical luminosities of SN Ic progenitor models with our fiducial mass-loss rate prescription are fainter than the detection limits. We also suggest the mass-loss rate of WR stars may not exceed 2 times of our fiducial value by comparing our predictions with the detection limit of SN Ib/Ic progenitors. The directly observed progenitor candidate of iPTF13bvn can be explained by our SN Ib progenitor models. We find that the SN 2017ein progenitor candidate is too bright and too blue to be a SN Ic progenitor.

  • PDF

Relative merits of different types of multi-wavelength observations to constrain galaxy physical parameter

  • Pacifici, Camilla
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.35.2-35.2
    • /
    • 2013
  • I will present a new approach to constrain galaxy physical parameters from the combined interpretation of stellar and nebular emission in wide ranges of observations. This approach relies on a comprehensive library of synthetic spectra, assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We focus on the constraints set by 5-band photometry and low- and medium-resolution spectroscopy at optical rest wavelengths on a few physical parameters characterizing the stars and interstellar medium. Since these parameters cannot be known a priori for any galaxy sample, we assess the accuracy to which they can be retrieved by simulating 'pseudo-observations' using models with known parameters. We find that the combined analysis of stellar and nebular emission in low-resolution (50A FWHM) galaxy spectra provides valuable constraints on all physical parameters. The approach can be extended to the analysis of any type of observation and during this talk i will present some applications to observed galaxies up to redshift 1.5.

  • PDF

POPULATION SYNTHESIS MODELS FOR NORMAL GALAXIES WITH DUSTY DISKS

  • Suh, Kyung-Won;Kim, Mi-Ryang
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.175-184
    • /
    • 2003
  • To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997) to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history). We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.