• Title/Summary/Keyword: Stanniocalcin 2

Search Result 5, Processing Time 0.02 seconds

Changes in Stanniocalcin-2 and Hypoxia-Inducible Factor-1α mRNA Expression in Medaka Oryzias dancena Exposed to Acute Hypoxia (저산소환경에 의한 송사리(Oryzias dancena)의 Stanniocalcin-2와 Hypoxia-Inducible Factor-1α mRNA 발현의 변화)

  • Shin, Ji Hye;Sohn, Young Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Some fish live in aquatic environments with low or temporally changing $O_2$ availability. Variation in dissolved oxygen (DO) levels requires behavioral, physiological, and biochemical adaptations to ensure the uptake of sufficient $O_2$. Several species are relatively well adapted to tolerate low $O_2$ partial pressures (hypoxia). The medaka (Oryzias dancena ) is an important model organism for biomedical research that shows remarkable tolerance to hypoxia. We investigated the regulation and role of hypoxia-inducible factor-1 (HIF-$1{\alpha}$) as a general hypoxia-response gene and stanniocalcin-2 (STC2), which is one of the genes regulated by HIF-$1{\alpha}$ in mammals under hypoxia. We subjected adult male medaka to the following three acute hypoxia regimes: 1, 24, and 72 h at DO = $1.8{\pm}0.5$ ppm. The changes in STC2 and HIF-$1{\alpha}$ mRNA were monitored using quantitative real-time reverse-transcription PCR. We found strong upregulation of HIF-$1{\alpha}$ mRNA in the livers of fish exposed to hypoxia. Hypoxia rapidly upregulated STC-2 mRNA expression in muscle, but not in the brain, gills, liver, or intestine. Therefore, unlike in mammals, hypoxia might regulate O. dancena STC-2 expression in an HIF-$1{\alpha}$-independent manner.

Identification of Ran-binding protein M as a stanniocalcin 2 interacting protein and implications for androgen receptor activity

  • Shin, Jihye;Sohn, Young Chang
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.643-648
    • /
    • 2014
  • Stanniocalcin (STC), a glycoprotein hormone originally discovered in fish, has been implicated in calcium and phosphate homeostasis. While fishes and mammals possess two STC homologs (STC1 and STC2), the physiological roles of STC2 are largely unknown compared with those of STC1. In this study, we identified Ran-binding protein M (RanBPM) as a novel binding partner of STC2 using yeast two-hybrid screening. The interaction between STC2 and RanBPM was confirmed in mammalian cells by immunoprecipitation. STC2 enhanced the RanBPM-mediated transactivation of liganded androgen receptor (AR), but not thyroid receptor ${\beta}$, glucocorticoid receptor, or estrogen receptor ${\beta}$. We also found that AR interacted with RanBPM in both the absence and presence of testosterone (T). Furthermore, we discovered that STC2 recruits RanBPM/AR complex in T-dependent manner. Taken together, our findings suggest that STC2 is a novel RanBPM-interacting protein that promotes AR transactivation.

Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress

  • Kim, Pyung-Hwan;Na, Sang-Su;Lee, Bomnaerin;Kim, Joo-Hyun;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.702-707
    • /
    • 2015
  • To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells.

Effect of Recombinant Olive Flounder Stanniocalcin on Serum Calcium Levels (혈청 칼슘 농도에 미치는 넙치 유전자 재조합 스타니오칼신의 효과)

  • Shin, Ji-Hye;Jung, Yu-Jung;Han, Yoon-Hee;Lee, Kyun-Young;Lee, Kyung-Mi;Kaneko, Toyoji;Sohn, Young-Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • Stanniocalcin 1 (STC1) is a glycoprotein hormone that is important in the maintenance of calcium and phosphate homeostasis in both fish and mammals. STC1 and its paralog STC2 are expressed in multiple tissues in fishes, although the physiological roles of piscine STCs are still unclear compared with those of mammals. In this study, we cloned olive flounder STC1 (ofSTC1) and ofSTC2 cDNAs into pET28a vector and used E. coli Rosetta (DE3) as the host strain for protein expression. Expression experiments were carried out using isopropyl-$\beta$-D-thiogalactoside (IPTG) and nickel affinity chromatography. We could identify the recombinant proteins as single 29.5 kDa (ofSTC1) and 33.2 kDa (ofSTC2) bands in the insoluble fraction on sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE). These results indicate that ofSTC1 and ofSTC2 were expressed as insoluble proteins in E. coli. Furthermore, the injection of ofSTC1 protein into juvenile tilapia resulted in a decrease of the serum calcium level. These results suggest that the purified fish STC1 and STC2 proteins may be used to elucidate the physiological role of STCs in fishes.

STC2 is upregulated in hepatocellular carcinoma and promotes cell proliferation and migration in vitro

  • Wang, Haixiao;Wu, Kuangjie;Sun, Yuan;Li, Yandong;Wu, Mingyu;Qiao, Qian;Wei, Yuanjiang;Han, Ze-Guang;Cai, Bing
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.629-634
    • /
    • 2012
  • The human glycoprotein, stanniocalcin 2 (STC2) plays multiple roles in several tumor types, however, its function and clinical significance in hepatocellular carcinoma (HCC) remain unclear. In this study, we detected STC2 expression by quantitative real-time PCR and found STC2 was upregulated in HCC tissues, correlated with tumor size and multiplicity of HCC. Ectopic expression of STC2 markedly promoted HCC cell proliferation and colony formation, while silencing of endogenous STC2 resulted in a reduced cell growth by cell cycle delay in G0/G1 phase. Western blot analysis demonstrated that STC2 could regulate the expression of cyclin D1 and activate extracellular signal-regulated kinase 1/2 (ERK1/2) in a dominant-positive manner. Transwell chamber assay also indicated altered patterns of STC2 expression had an important effect on cell migration. Our findings suggest that STC2 functions as a potential oncoprotein in the development and progression of HCC as well as a promising molecular target for HCC therapy.