• Title/Summary/Keyword: Standoff Chemical Agent Detection System

Search Result 2, Processing Time 0.016 seconds

Deep UV Raman Spectroscopic Study for the Standoff Detection of Chemical Warfare Agents from the Agent-Contaminated Ground Surface (지표면 화학작용제 비접촉 탐지를 위한 단자외선 라만분광법 연구)

  • Choi, Sun-Kyung;Jeong, Young-Su;Lee, Jae Hwan;Ha, Yeon-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.612-620
    • /
    • 2015
  • Short-range detection of chemical agents deposited on ground surface using a standoff Raman system employing a pulsed laser at 248 nm is described. Mounted in a vehicle such as an NBC reconnaissance vehicle, the system is protected against toxic chemicals. As most chemicals including chemical warfare agents have unique Raman spectra, the spectra can be used for detecting toxic chemicals contaminated on the ground. This article describes the design of the Raman spectroscopic system and its performance on several chemicals contaminated on asphalt, concrete, sand, etc.

Passive Remote Chemical Detection of SF6 Clouds in the Atmosphere by FTIR (수동형 FTIR 원격화학 탐지기를 이용한 SF6 오염운의 실시간 탐지)

  • Chong, Eugene;Park, Byeonghwang;Kim, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • Brightness temperature spectra acquired from FTIR(Fourier Transform Infrared)-SCADS (Standoff Chemical Agent Detection System) could be available for detection and identification of the chemical agents and pollutants from different background. IR spectrum range of 770 to 1350 $cm^{-1}$ is corresponding to "atmospheric window". A 2-dimensional(2D) brightness temperature spectrum was drawn from combining each data point through automatic continuous scanning of FTIR along with altitude and azimuth. At higher altitude, temperature of background was decreased but scattering effect of atmospheric gases was increased. Increase in temperature difference between background and blackbody in SCADS at higher temperature causes to increases in peak intensity of $SF_6$. This approach shows us a possibility that 2D visual information is acquired from scanning data with a single FTIR-SCADS.