• Title/Summary/Keyword: Standoff

Search Result 84, Processing Time 0.03 seconds

Development of an Ultraviolet Raman Spectrometer for Standoff Detection of Chemicals

  • Ha, Yeon Chul;Lee, Jae Hwan;Koh, Young Jin;Lee, Seo Kyung;Kim, Yun Ki
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.247-251
    • /
    • 2017
  • In this study, an ultraviolet Raman spectrometer was designed and fabricated to detect chemical contamination on the ground. The region of the Raman spectrum that indicated the characteristics of the chemicals was $350-3800cm^{-1}$. To fabricate a Raman spectrometer operating in this range, the layout and angle of optical components of the spectrometer were designed using a grating equation. Experimental devices were configured to measure the Raman spectra of chemicals based on the fabricated Raman spectrometer. The wavenumber of the spectrometer was calibrated by measuring the Raman spectrum of polytetrafluoroethylene, $O_2$, and $N_2$. The spectral range of the spectrometer was measured to be 23.46 nm ($3442cm^{-1}$) with a resolution of 0.195 nm ($30.3cm^{-1}$) at 253.65 nm. After calibration, the main Raman peaks of cyclohexane, methanol, and acetonitrile were found to be similar to the references within a relative error of 0.55%.

Optimal Blasting Conditions for Surface Profile when Micro Particle Blasting by Statistical Analysis of Orthogonal Arrays (미세입자 분사가공시 직교배열표의 통계적 분석에 의한 표면형상의 최적 분사 조건)

  • Kwon, Dae-Gyu;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.148-154
    • /
    • 2016
  • A study on the micro particle blasting was conducted to find the optimum conditions of the blasted surface of aluminum 6061. The particle type such as $Al_2O_3$ and SiC, nozzle diameter, pressure, standoff distance and injection time were used as blasting conditions. Statistical method of orthogonal arrays(ANOVA) was used to find optimum conditions of maximum depth and maximum diameter of blasted surface. Particle type, nozzle diameter, and pressure were found to be the main factors of maximum blasted depth and diameter. Maximum blasted diameter was affected by increasing pressure and nozzle diameter but saturated maximum diameter. Maximum blasted depth was affected by pressure and nozzle diameter when aluminum 6061 was blasted with $Al_2O_3$ particle. The value of surface roughness was increased as pressure and nozzle diameter increased when aluminum 6061 was blasted with SiC.

Cooperative Standoff Tracking of a Moving Target using Decentralized Extended Information Filter (이동 목표물 협력추적을 위한 다수 무인항공기의 분산형 확장정보필터 설계)

  • Yoon, Seung-Ho;Bae, Jong-Hee;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1013-1020
    • /
    • 2011
  • This paper deals with the tracking problem of a moving target using multiple unmanned aerial vehicles. A decentralized extended information filter is designed to cooperatively estimate the position and the velocity of the moving target. The extended information filter is adopted to consider the range and the line-of-sight angle as measurement data. The decentralized scheme is applied to enhance the estimation performance using the information provided by other vehicles. Numerical simulation is performed to verify the tracking performance of the proposed decentralized filters.

Effect of Initial Diameter on the Soot Generation of Toluene Fuel Droplet (초기 직경 변화가 Toluene 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • The main purpose of this study is to provide the information of soot generation of toluene fuel droplet. To achieve this, this paper provides the experimental results on the different initial diameter of toluene droplet combustion characteristics conducted under equivalent ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) conditions. Visualization of single fuel droplet was performed with high resolution CCD camera and visualization system. At the same time, ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) were maintained by ambient condition control system. Soot volume fraction ($f_v$) was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The result of soot generation was almost the same regardless of initial droplet diameter since thermophoretic flux is not much changed under the same ambient conditions. Soot standoff ratio (SSR) of 2 mm diameter showed unstable variation characteristics due to the short available measuring time.

Passive Remote Chemical Detection of SF6 Clouds in the Atmosphere by FTIR (수동형 FTIR 원격화학 탐지기를 이용한 SF6 오염운의 실시간 탐지)

  • Chong, Eugene;Park, Byeonghwang;Kim, Ju Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • Brightness temperature spectra acquired from FTIR(Fourier Transform Infrared)-SCADS (Standoff Chemical Agent Detection System) could be available for detection and identification of the chemical agents and pollutants from different background. IR spectrum range of 770 to 1350 $cm^{-1}$ is corresponding to "atmospheric window". A 2-dimensional(2D) brightness temperature spectrum was drawn from combining each data point through automatic continuous scanning of FTIR along with altitude and azimuth. At higher altitude, temperature of background was decreased but scattering effect of atmospheric gases was increased. Increase in temperature difference between background and blackbody in SCADS at higher temperature causes to increases in peak intensity of $SF_6$. This approach shows us a possibility that 2D visual information is acquired from scanning data with a single FTIR-SCADS.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Concrete plug cutting using abrasive waterjet in the disposal research tunnel (연마재 워터젯을 활용한 처분터널 내 콘크리트 플러그 절삭)

  • Cha, Yohan;Kim, Geon Young;Hong, Eun-Soo;Jun, Hyung-Woo;Lee, Hang-Lo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.153-170
    • /
    • 2022
  • Waterjet has been comprehensively used in urban areas owing to a suitable technique for cutting concrete and rock, and low noise and vibration. Recently, the abrasive waterjet technique has been adopted and applied by the Korea Atomic Energy Research Institute to demolish concrete plugging without disturbing and damaging In-situ Demonstration of Engineered Barrier System in the disposal research tunnel. In this study, the use of abrasive waterjet in the tunnel was evaluated for practical applicability and the existing cutting model was compared with the experimental results. As a variable for waterjet cutting, multi-cutting, water flow rate, abrasive flow rate, and standoff distance were selected for the diversity of analysis. As regarding the practical application, the waterjet facilitated path selection for cutting the concrete plugging and prevented additional disturbances in the periphery. The pump's noise at idling was 64.9 dB which is satisfied with the noise regulatory standard, but it exceeded the standard at ejection to air and target concrete because the experiment was performed in the tunnel space. The experimental result showed that the error between the predicted and measured cutting volume was 12~13% for the first cut and 16% for second cut. The standoff distance had a significant influence on the cutting depth and width, and the error tended to decrease with decrement of standoff distance.

Three Dimensional Responses of Middle Rise Steel Building under Blast Loads (폭발하중을 받는 강구조 중층 건물의 응답 및 해석)

  • Hwang, Young-Seo;Lee, Wan-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.629-636
    • /
    • 2011
  • It has been suggested that buildings designed for strong ground motions will also have improved resistance to air blast loads. As an initial attempt to quantify this behavior, the responses of a ten story steel building, designed for the 1994 building code, with lateral resistance provided by perimeter moment frames, is considered. An analytical model of the building is developed and the magnitude and distribution of blast loads on the structure are estimated using available computer software that is based on empirical methods. To obtain the relationship between pressure, time duration, and standoff distance, these programs are used to obtain an accurate model of the air blast loading. A hemispherical surface burst for various explosive weights and standoff distances is considered for generating the air blast loading and determining the structural response. Linear and nonlinear analyses are conducted for these loadings. Air blast demands on the structure are compared to current seismic guidelines. These studies present the displacement responses, story drifts, demand/capacity ratio and inelastic demands for this structure.

Design Parameters for Development of flexible Linear Shaped Charge (가소성 선형 성형폭약 제조를 위한 설계변수에 관한 연구)

  • 박근순;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.225-234
    • /
    • 2003
  • The structures to be demolished have become diverse in types from reinforced concrete to steel. The demand for demolition of steel structures is recently increasing in Korea. Most of flexible linear-shaped charges for steel demolition are now imported from foreign countries. To determine the optimum parameters of design far domestic development of flexible linear-shaped charges, some basic experiments have been carried out and their results are summarized as follows; Copper is shown to be superior to aluminium and lead as a liner material. It is also proved that the optimum apex angle of liner is 90$^{\circ}$ in comparision with 45$^{\circ}$, 60$^{\circ}$ and 120$^{\circ}$ Adequate thickness of liners, standoff distance in terms of quantity of explosives are also examined. Explosives and liners are required to be plasticized in order to improve the bond between explosives and various shapes of steel structures.