• Title/Summary/Keyword: Standing worker

Search Result 20, Processing Time 0.029 seconds

A Study on the Improvement Measures of Labor Conditions of the Contingent Worker (비정규직의 노동조건 개선 대책에 관한 연구)

  • Choi Seong-Wook;Byun Sang-Woo
    • Management & Information Systems Review
    • /
    • v.14
    • /
    • pp.117-132
    • /
    • 2004
  • The purpose of this study is to propose empirically the improvement measures of labor conditions of the contingent worker. Since early 1980s, the labour market in Korea has given rise to a rapid growth in contingent worker. Last year, the number has shot over 7 million mark, with the ratio standing above the 50%. This study analyses the improvement measures of labor conditions of the contingent worker. This study present five major improvement measures of labor conditions of the contingent worker. First, It's establish of the relations between organizational flexibility of the labour market and the contingent worker. Second, It's needs to realize wages level of the contingent worker. Third, the contingent worker convert standard workforce step by step. Fourth, it's make no discrimination of the between contingent worker and standard workforce. Fifthly, the government place restrictions of the contingent worker rates.

  • PDF

Comparison of Knee Muscle Strength and Ankle Dorsiflexion Range of Motion Between Standing Workers With and Without Patellofemoral Pain Syndrome

  • Weon, Young-soo;Ahn, Sun-hee;Kim, Jun-hee;Gwak, Gyeon-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.241-249
    • /
    • 2020
  • Background: Prolonged standing during work causes a lower extremity pain and disorders. Patellofemoral pain syndrome (PFPS) is one of the common diagnoses of the knee pain. Although the etiology of PFPS is not completely understood, it is considered to be multifactorial. Objects: The purpose of this study was to investigate difference in strength of knee muscles, quadriceps:hamstring muscles strength ratio (Q:H ratio), asymmetry ratio of knee muscles strength and dorsiflexion range of motion (ROM) between standing workers with and without PFPS. Methods: Twenty-eight standing workers with PFPS and 26 age-, height-, and weight-matched standing workers without PFPS participated in this study. A tension sensor measured knee muscle strength, and motion sensor measured dorsiflexion ROM. The asymmetry ratio of knee muscles was calculated by a specific formula using the knee muscles strength of the dominant side and the sound side. An independent t-test was used to identify significant differences in the strength, ROM, Q:H ratio, and asymmetry ratio between the PFPS and normal groups. Results: The standing worker with PFPS have significantly lower dorsiflexion ROM (p < 0.000) and higher asymmetry ratio of the hamstring muscles strength (p < 0.000) compare to the standing worker without PFPS. No significant differences were seen in the strength of quadriceps muscle and hamstring muscles, Q:H ratio, and asymmetry ratio of quadriceps muscle strength. Conclusion: There was a significant difference in the asymmetry ratio of the isometric hamstring muscle strength. This finding suggests that the asymmetry ratio of isometric hamstring muscle strength may be more important than measuring only the hamstring muscle strength of the PFPS side. Furthermore, the results of this study showed a significant difference in dorsiflexion ROM between the standing industrial workers with and without PFPS. Dorsiflexion ROM and isometric hamstring muscle strength should be considered when evaluating the subjects with PFPS.

The Effects of Customized Insoles on the Post-Work Discomfort and Pain (맞춤형 인솔이 산업체 근로자의 작업 후 신체불편지수와 통증에 미치는 영향)

  • Kim, Duck-Hwa;Jung, Do-Young;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.14 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • In many manufacturing occupations, industrial workers reported foot or lower leg problems such as discomfort, pain or orthopedic deformities. This study investigated the effects of two different working conditions upon assembly worker's perception of discomfort and foot pain associated with various body parts. Twenty-three male volunteers performed work in the factory. Ergonomic intervention has been to modify the flooring in an attempt to alleviate the problems associated with constrained standing and walking work. The worker's standing conditions consisted of standing on a hard floor while wearing shoe insoles. Questions were asked regarding body discomfort and foot pain. Significant differences in body discomfort and foot pain were found when comparing the overall effects of wearing shoe insoles on a hard floor (p<.05). This investigation indicated that shoe insoles reduced body discomfort and foot pain (p<.05).

  • PDF

Smart Safety Belt for High Rise Worker at Industrial Field

  • Lee, Se-Hoon;Moon, Hyo-Jae;Tak, Jin-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • Safety management agent manages the risk behavior of the worker with the naked eye, but there is a real difficulty for one the agent to manage all the workers. In this paper, IoT device is attached to a harness safety belt that a worker wears to solve this problem, and behavior data is upload to the cloud in real time. We analyze the upload data through the deep learning and analyze the risk behavior of the worker. When the analysis result is judged to be dangerous behavior, we designed and implemented a system that informs the manager through monitoring application. In order to confirm that the risk behavior analysis through the deep learning is normally performed, the data values of 4 behaviors (walking, running, standing and sitting) were collected from IMU sensor for 60 minutes and learned through Tensorflow, Inception model. In order to verify the accuracy of the proposed system, we conducted inference experiments five times for each of the four behaviors, and confirmed the accuracy of the inference result to be 96.0%.

Relationship between 3D Ground Reaction Force and Leg Length Discrepancy during Gait among Standing Workers

  • Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • Purpose: The aim of this research was to verify the relationship between three-dimensional (3D) ground reaction force (GRF) and severity of leg length discrepancy (LLD) while walking at a normal speed. It used a 3D motion analysis system with force platforms in standing workers with LLD. Methods: Subjects comprising 45 standing workers with LLD were selected. Two force platforms were used to acquire 3D GRF data based on a motion analysis system during gait. Vicon Nexus and Visual3D v6 Professional software were used to analyze kinetic GRF data. The subjects were asked to walk on a walkway with 40 infrared reflective markers attached to their lower extremities to collect 3D GRF data. Results: The results indicated the maximal force in the posterior and lateral direction of the long limb occurring in the early stance phase during gait had significant positive correlation with LLD severity (r = 0.664~0.738, p <0.01). In addition, the maximal force medial direction of the long limb occurring in the late stance phase showed a highly positive correlation with the LLD measurement (r = 0.527, p <0.01). Conclusion: Our results indicate that greater measured LLD severity results in more plantar pressure occurring in the foot area during heel contact to loading response of the stance phase and the stance push-off period during gait.

Measurement of Worker's Physiological and Biomechanical Responses during the Cherry Tomato Harvesting Work in a Greenhouse (온실에서 방울토마토 수확작업시 작업자의 생리학적 및 생체역학적 반응 측정)

  • SeonWoo, Hoon;Lim, Ki-Taek;Kim, Jang-Ho;Son, Hyun-Mok;Chung, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Physiological signals such as body temperature, heart rate, blood pressure and heart rate variability and biomechanical workload for stress analysis were investigated during the cherry tomato harvesting work in a greenhouse. The skin temperatures raised $0.05^{\circ}C$/min, $0.03^{\circ}C$/ min, and $0.08^{\circ}C$/min in standing, stooping and squatting postures, respectively. Breath rate significantly increased from 18 to 28 breaths/min during the cherry tomato harvesting work. As the heart rate during the work ranged from about 72 to 110 beats/min (bpm), the cherry tomato harvesting work appeared to be a light intensity task of less than 110 bpm. The worker's average energy consumption rate in three positions during 43 min working time was 65.74 kcal (91 kcal/h in 70 kg). This was a light intensity of work, compared to 75 kcal/h in 70 kg of basic metabolic energy consumption rate of a worker with 70 kg weight; The maximum shear force on the disk (L5/ S1) due to static workload in the cherry tomato harvesting work was 446 N in the stooping posture, 321 N in the squatting posture and 287 N in the standing posture. Acute stress index expressed with the heart rate variability, increased parasympathetic activation up to about 70 while workers were doing most agricultural work in this study. This study provided a system to measure quantitatively workers' physiological change, kinematics and kinetic factors without any restrictions of space in the greenhouse works.

Study on Improvement of Working Environment in Plastic House to Prevent Plastic House Syndrome (하우스증 예방을 위한 비닐하우스내 작업환경 개선에 관한 연구)

  • 김명주;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.5 no.2
    • /
    • pp.107-115
    • /
    • 1994
  • This study was conducted to provide a counterplan for preventing so celled “plastic house syndrome” revealed among farmers spending much time in the plastic houses. For this, working environment inside a plastic house was observed. Then, experiments were carried out mostly in a climatic chamber with three kinds of working posture on uneven($D_1-F_1$) or even($D_2-F_2$) ground surface. Tested work loads with three kinds of working posture were : moving in a sitting posture with attaching breast to legs and waving arms ($A_1$), moving in a bending posture with waving arms ($B_1$), and moving a 6kg weighting luggage in a standing posture ($C_1$) Physiological responses in the workers to three different work loads were observed in a climatic chamber, with or without using some instruments, to evaluate work efficiencies. The results obtained are summerized as follows. 1. $C_1$ was the hardest work and $B_1$ was harder than $A_1$ on the even ground. 2. Worker's physiological fatigue and physical loads remarkably decreased when using the instruments such as a chair and a cart with some rollers on the even ground. 3. Working with pushing a cart($F_1$) was the hardest work, and standing($D_1$) was harder than walking($E_1$) on the uneven ground. 4. Worker's physiological fatigues and physical loads remarkably decreased on the even ground. 5. Similar results were obtained when the same experiment was carried out in a plastic house.

  • PDF

Analysis of Working Posture for Construction Workers Using OWAS Method (OWAS 기법을 활용한 건설업 근로자의 작업 자세 분석)

  • Eom, Ran-i;Lee, Yejin
    • Fashion & Textile Research Journal
    • /
    • v.20 no.6
    • /
    • pp.704-712
    • /
    • 2018
  • This study analyzed working postures using the Ovako Working Posture Analysis System (OWAS) to improve work clothes for construction workers. A video taken at a construction work site was stopped at regular intervals and the postures of relevant body parts proposed by OWAS was recorded. Additionally, based on analysis of the working postures code, the level of work action for each postures was classified from stage I to IV. General workers frequently straightened or bent forward at the waist, and used their legs to stand, bend, or walk. Wood workers moved extensively from the waist, keeping their legs relatively straight and their arms held below their shoulders, repeatedly tapping with a hammer weighing less than 10.0kg. Rebar bending workers mainly bent forward at the waist, with both legs bent or standing with one leg bent. Rebar transport and fixing workers walked with the waist straight, and occasionally one or both hands held above the shoulders. Their work also involved holding a hook, which weigh less than 10.0kg, in their hands, and the difficult task of lifting and placing long rebars, which weigh from 10.0 to 20.0kg or more. Concrete pouring workers bent or twisted their back to the side. Therefore, this study suggests that design goals should be different when developing workwear for each type of worker.

Comparison of Deep Learning Based Pose Detection Models to Detect Fall of Workers in Underground Utility Tunnels (딥러닝 자세 추정 모델을 이용한 지하공동구 다중 작업자 낙상 검출 모델 비교)

  • Jeongsoo Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.302-314
    • /
    • 2024
  • Purpose: This study proposes a fall detection model based on a top-down deep learning pose estimation model to automatically determine falls of multiple workers in an underground utility tunnel, and evaluates the performance of the proposed model. Method: A model is presented that combines fall discrimination rules with the results inferred from YOLOv8-pose, one of the top-down pose estimation models, and metrics of the model are evaluated for images of standing and falling two or fewer workers in the tunnel. The same process is also conducted for a bottom-up type of pose estimation model (OpenPose). In addition, due to dependency of the falling interference of the models on worker detection by YOLOv8-pose and OpenPose, metrics of the models for fall was not only investigated, but also for person. Result: For worker detection, both YOLOv8-pose and OpenPose models have F1-score of 0.88 and 0.71, respectively. However, for fall detection, the metrics were deteriorated to 0.71 and 0.23. The results of the OpenPose based model were due to partially detected worker body, and detected workers but fail to part them correctly. Conclusion: Use of top-down type of pose estimation models would be more effective way to detect fall of workers in the underground utility tunnel, with respect to joint recognition and partition between workers.

Effects of McKenzie Cervical Exercise Program on Cervical Pressure Pain and Balance in Industrial Workers (맥캔지 경부 운동프로그램이 산업체 근로자의 경부압통과 균형에 미치는 영향)

  • Lee, Hyongsoo;Kim, Yoonhwan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.2
    • /
    • pp.107-115
    • /
    • 2018
  • Purpose : The purpose of this study was to determine the effects of the McKenzie cervical exercise program on cervical pressure pain and balance in industrial workers. Method : The subjects, who consisted of 26 industrial workers, were randomly divided into two groups. The control group (n=13) went about their daily living routines. The other group (n=13) used the McKenzie cervical exercise program for 6 weeks (2 to 3 times/day). Pressure threshold and balance ability tests were completed before and after the experiment. The balance test was performed both with the eyes open and closed in a standing position. Result : There were significant improvements in the pressure threshold and balance ability test for the McKenzie cervical exercise program group (p<.05), while the control group showed no significant changes (p>.05). Conclusion : The above results revealed that the McKenzie cervical exercise program is effective in improving balance and cervical pressure pain.