• Title/Summary/Keyword: Standing biomass

Search Result 96, Processing Time 0.023 seconds

Size Dependent Analysis of Phytoplankton Community Structure during Low Water Temperature Periods in the Coastal Waters of East Sea, Korea (저수온기 동해연안의 식물플랑크톤 크기에 따른 군집구조)

  • Lee, Juyun;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.168-175
    • /
    • 2014
  • In order to understand the phytoplankton community structure based on their cell size duringlow water temperature periods, we studied 10 stations in the East Sea, Korea on March, 2012. The minimum standing crops of total phytoplankton were $3.4{\times}10^6cells\;L^{-1}$ at the station 5. The maximum values were $7.6{\times}10^6cells\;L^{-1}$ at the station 8, which is two times the amount of the minimum. The carbon mass at the station 4 ($6.3{\times}10^8pg\;L^{-1}$) was more than forty times higher compared with station 5 ($0.08{\times}10^8pg\;L^{-1}$). From these results, we found a significant difference between standing crops and carbon mass which might have caused due to their differences in community structure and cell size. Therefore, we considered the types of plankton biomass to estimate the primary product in the specific location and/or time. The phytoplankton communities were classified in 3 types: microplankton (> $20{\mu}m$), nanoplankton (< $20{\mu}m$) and picoplankton (< $2{\mu}m$). In the case of picoplankton, various morphological types were observed during the study period. These various picoplankton species were further classified as S (spherical), SF (spherical&flagella), O (oval), OF (oval&flagella) or R (rod) type, and we analyzed their community structure based on these categories. The picoplankton was found to be the most dominant type at 8 stations and S type as the most popular. The picoplankton seems to be the significant organism in the marine ecology during low water temperature periods in the coastal waters of East Sea. Therefore, picoplankton \;-with scientific surveys can be considered as the database for their identification. In conclusion, we suggest that cell size of the phytoplankton would be the best criteria to accurately analyze their community structure and to reveal groups having more ecological influence.

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan (서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량)

  • Won, Ho-Yeon;Kim, Deok-Ki;Han, Areum;Lee, Young-Sang;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2016
  • Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park (월악산 소나무림의 유기탄소 분포 및 수지)

  • Lee, Ji-Young;Kim, Deok-Ki;Won, Ho-Yeon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.

Effects of the Aquatic Vascular Plants on the Lake Ecosystem in the Upper Stream Wetlands of the Namgang-Dam (남강댐 상류 습지에서 수생관속식물이 호소생태계에 미치는 영향)

  • Oh, Kyung-hwan;Lee, Jeong-Hwan;Kim, Cheol-Soo;Son, Sung-Gon;Lee, Pal-Hong
    • Journal of Wetlands Research
    • /
    • v.1 no.1
    • /
    • pp.29-44
    • /
    • 1999
  • Vegetation structure and distribution of the vascular hydrophytes and hygrophytes, and the growth pattern, standing crop and amounts of nutrient uptake by Salix species were investigated in the upper stream wetlands of the Namgang-Dam, Chinju-city, Gyeongsangnam-do, Korea from April to November in 1997. The flora was composed of 43 hydrophytes and 241 hygrophytes, or total 284 vascular plants. The life forms of the hydrophytes were classified as 27 kinds of emergent plants, 4 floating-leaved plants, 3 free-floating plants, and 9 submersed plants. In the herb layer, the dominant species was Persicaria hyciropiper, and the ranges of the species diversity indices (H'), equitabilities, (J') and community similarity indices (CCs) were 1.59~1.89, 0.87~0.96, and 0.35~0.83, respectively. In the shrub and subtree layers, 17 kinds of Salix species were supposed to the pioneer plants at the early stage of the succession. The number of branches per main stem of Salix species was 5.0. The DBH class-frequency histograms of Salix species were the reverse J type, and the natural regeneration of the Salix community was expected. Basal area of Salix species per square meter was $24.87cm^2$. Volume of Salix species per square meter was $12,008cm^3$ and total phytomass of the Salix species was estimated as 12,894 ton. Biomass distribution of Salix species in the stem, the branch and twig, and the leaf was 64.1%, 28.1%, and 7.8%, respectively. The amounts of nitrogen and phosphorus absorbed by Salix species were 68,022 and 19,823 kg. It was recommended that application and conservation of the wetland and other counterplans are indispensable to reduce the adverse effects of water pollution and to preserve the wetland ecosystem.

  • PDF

Understanding of Phytoplankton Community Dynamics Through Algae Bioassay Experiment During Winter Season of Jinhae bay, Korea (생물검정실험을 통한 동계 진해만 식물플랑크톤의 군집 변동 특성 파악)

  • Hyun, Bong-Gil;Shin, Kyoung-Soon;Kim, Dong-Sun;Kim, Young-Ok;Joo, Hae-Mi;Baek, Seung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2011
  • The distributions of phytoplankton assemblages and environmental factors in Jinhae Bay and their relationships were investigated to estimate the potential limiting nutrient for phytoplankton growth and community structure. In situ algal bioassay experiments were also conducted to assess the species-specific characteristics in phytoplankton responses under different nutrient conditions (control, N(+) and P(+) treatment). During the study periods, bacillariophyceae and cryptophyceae occupied more than 90% of total phytoplankton assemblages. Phytoplankton standing crops in the inner part of Masan Bay were higher than that of Jinhae Bay. The DIN:DIP ratio, pH and transparency showed the significant positive correlation with phytoplankton biomass. According to cluster and multidimensiolnal scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western part of Jinhae bay where cryptophyta species were dominated. The second group was distinguished from inner stations in Masan Bay. These stations showed low transpancy and high DIN:DIP ratio. The other cluster included the stations from the eastern part and central part of Jinhae Bay, which was characterized by the high DSi:DIP ratio and dominant of diatom species. Phosphorous (P) was limited in Masan Bay due to significantly increases in the phytoplankton abundances. Based on stoichiometric limitation and algal bio-assay in Jinhae Bay, nitrogen (N) was a major limiting factor for phytoplankton production. However, silicate (Si) was not considered as limiting factor, since Si/DIN and Si/P ratio and absolute concentration of nutrient did not create any potential stoichiometric limitation in the bay. This implies that high Si availability in winter season contributes favorably to the maintenances of diatom species.

Biodiversity and Community Composition of Benthic Macroinvertebrates from Upo Wetlands in Korea (우포습지의 저서성 대형무척추동물 다양성과 군집 특성)

  • 배연재;조신일;황득휘;이황구;나국본
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.75-91
    • /
    • 2004
  • Biodiversity and seasonal community composition of benthic macroinvertebrates were studied from Upo wetlands in Gyeongsangnam-do, Korea, comprising Upo (4 sites), Mokpo (2 sites), Sajipo (1 site), Jjokjibeol (1 site), Yeobeol (1 site), and Topyeongcheon (2 sites) areas from October 2002 to August 2003. As a result, it was known that Upo wetlands retained relatively well-preserved littoral zones which may provide good habitats for benthic macroinvertebrates; however, frequent disturbances of littoral zones caused by flood were the major factor affecting on the survival and distribution of benthic macroinvertebrates in the areas. During the study period, a total of 135 species of benthic macroinvertebrates in 10 genera, 59 families, 16 orders, 7 classes, and 3 phyla were collected those of which are the highest degree of diversity of the taxa ever known in Korean wetlands: aquatic insects 103 spp. (Diptera 27 spp., Odonata 24 spp., Coleoptera 19 spp., Hemiptera 16 spp., Ephemeroptera 9 spp., Trichoptera 7 spp., and Collembola 1 sp.), Crustacea 2 spp., Mollusca 19 spp. (Gastropoda 12 spp. and Bivalvia 7 spp.), and Annelids 11 spp. (Oligocaeta 1 sp. and Hirudinea 10 spp.). Sajipo (St.G) and Jjokjibeol (St.H) areas yielded relatively larger numbers of species, 54 spp. and 53 spp., respectively, while more than 40 species occurred at most other sites. Based on quantitative sampling (0.5m${\times}$2m), aquatic insects (88.0%), particularly chironomids in Diptera (61.0%), occupied major proportion of the total individuals of benthic macroinvertebrates, while Mollusca (5.3%), Annelida (3.5%), and Crustacea (3.2%) occupied minor proportions. In standing water areas, diverse groups of benthic macroinvertebrates such as chironomids, demselflies, aquatic bugs, aquatic beetles, crustaceans, and gastropods were dominant in terms of individual number; in the running water areas, on the other hand, chironomids and baetid mayflies were dominant. However, gastropods, i.e. viviparids, were the dominant group of benthic macroinvertebrates in most study areas in terms of biomass. Dominance indices were 0.22-0.51 (mean$\pm$sd 0.42$\pm$0.09) in autumn, 0.31-0.96 (0.02$\pm$0.23) in winter, and 0.30-0.89 (0.57$\pm$0.18) in summer; diversity indices were 3.50-4.26 (3.80$\pm$0.24) in autumn,1.55-4.50 (3.10$\pm$1.01) in winter, and 1.35-3.77 (2.55$\pm$0.09) in summer. Highly movable or true aquatic benthic macroinvertebyates such as aquatic bugs, aquatic beetles, and gastropods recovered earlier after flood. In the study sites of Upo wetlands, Upo and Sajipo areas showed relatively higher values of average diversity index which may indicate a good habitat condition for benthic macroinvertebrates.