• Title/Summary/Keyword: Standby-related failure rate

Search Result 2, Processing Time 0.017 seconds

A Study on the Advanced Reliability Assessment Method about Hot-Standby Sparing System for Railway Signaling (철도신호 대기이중중계구조 제어기의 향상된 신뢰도평가방법에 관한 연구)

  • Min, Geun-Hong;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1589-1595
    • /
    • 2007
  • This paper suggests the advanced reliability assessment tool for railway signaling Hot-Standby sparing system. Existing reliability assessment for Hot-Standby sparing system controller is done by using single module mean failure rate based on approximated Hot standby sparing system function. Although approximated Hot standby sparing system function can be applied to various Hot standby sparing system, however, it is not able to reflect the exact system structure. In this paper, we suggest the advanced reliability function by identifying changeover-related failure factors and common failure mode which is not considered in existing approximated Hot standby sparing system reliability function via developing Hot standby sparing system model for railway signaling and applying FMECA to this model. Also. we compare reliability assessment results for model system to reliability assessment for existing system.

Effect of test-caused degradation on the unavailability of standby safety components

  • S. Parsaei;A. Pirouzmand;M.R. Nematollahi;A. Ahmadi;K. Hadad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.526-535
    • /
    • 2024
  • This paper proposes a safety-critical standby component unavailability model that contains aging effects caused by the elapsed time from installation, component degradation due to surveillance tests, and imperfect maintenance actions. An application of the model to a Motor-Operated Valve and a Motor-Driven Pump involved in the HPIS of a VVER/1000-V446 nuclear power plant is demonstrated and compared with other existing models at component and system levels. In addition, the effects of different unavailability models are reflected in the NPP's risk criterion, i.e., core damage frequency, over five maintenance periods. The results show that, compared with other models that do not simultaneously consider the full effects of degradation and maintenance impacts, the proposed model realistically evaluates the unavailabilities of the safety-related components and the involved systems as a plant age function. Therefore, it can effectively reflect the age-dependent CDF impact of a given testing and maintenance policy in a specified time horizon.