• Title/Summary/Keyword: Standard voltage transformer

Search Result 51, Processing Time 0.04 seconds

Construction of On-Site Calibration Facilities of 66 kV Voltage Transformer Comparator System (66kV급 전압변성기 비교측정 장치의 현장 평가설비 구축)

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kwon, Sung-Won;Kim, Myung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1268-1274
    • /
    • 2007
  • A recently developed methods for the on-site calibration of the voltage transformer (VT) comparator system have been reviewed in the paper. The method utilizes the several traveling standards consisting of the VT, the non-reactive standard resistors, the wide ratio error VT, and the decade resistors. The VT is used for the absolute evaluation of a standard VT belonging to the industry. The non-reactive standard resistor and wide ratio error VT are used for the linearity check of errors in the voltage comparator of the industry. The decade resistors are used for evaluation of a VT burden of the industry.

Establishment of 200 kV AC High Voltage National Standard System (200 kV 교류 고전압 국가표준 시스템 구축)

  • Jung, Jae-Kap;Kwon, Sung-Won;Lee, Sang-Hwa;Kang, Jeon-Hong;Song, Yang-Sup;Kim, Myung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1414-1415
    • /
    • 2007
  • 200 kV AC high voltage national standard system has been established with a purpose for support of heavy electrical industry. The system consists of high AC voltage source and regulating unit, the standard voltage transformer, voltage transformer comparator, and voltage transformer burden, and voltage transformer under test.

  • PDF

Establishment of National Standard System for 240 kV High Voltage Transformer (240 kV 고전압 변성기 국가표준 시스템 구축)

  • Jung, Jae-Kap;Kwon, Sung-Won;Lee, Sang-Hwa;Kang, Jeon-Hong;Kim, Myung-Soo;Han, Sang-Gil;Kim, Yoon-Hyoung;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • National standard system for calibrating voltage transformer(VT) up to primary voltage of 240 kV have been established in 2005. The system consists of voltage source, regulating unit, VT testing unit, standard VT, VT under test and VT burden. To verify and validate the performance for 240 kV VT calibration system, the comparison with the National Measurement Institute of Australia(NMIA) has been performed using same VTs. The comparison results of the VTs mesured at the Korea Research Institute of Stansdards and Science(KRISS) are consistent with those measured at NMIA within 0.002 % for ratio error and 0.14 min for phase displacement in the primary voltage ranges of Vp = 3300 V - 22000 V with a secondary voltage of Vs = 110 V.

A Study on Ratio Error and Phase Angle Error Caused by an External Burden in Voltage Transformer (외부부담이 전압변성기의 비오차와 위상각오차에 미치는 영향에 대한 연구)

  • 정재갑;권성원;김규태;김명수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.137-142
    • /
    • 2004
  • A voltage transformer(VT) used for the estabilishment of high voltage national standard, has generally ratio error and phase angle error. Both errors in VT depend critically on values of external burden of VT used. Both ratio ewer and phase angle error in existence of the external burden is calculated. These calculated values are very well consistent with the experimental result. The principle and the measurement method of VT in our institute are also explained.

Development of the iron-cored electronic voltage transformer (철심 코어형 전자식 전압 변성기 개발)

  • Kang, Yong-Cheol;Park, Jong-Min;Jang, Sung-Il;Kim, Yeon-Hee;Choi, Jung-Hwan;Kim, Yong-Kyun;Song, In-Jun;An, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.138-139
    • /
    • 2008
  • An iron-cored voltage transformer(VT) is usually used to obtain the standard low voltage signal for protection and measurement. Generally, the iron-cored transformers have errors due to the hysteresis characteristics of the iron-core. An error compensating algorithm for iron-cored instrument transformer can improve the accuracy of conventional voltage transformers. This paper describes the iron-cored electronic voltage transformer having the error compensating algorithm. The innovative product composes an iron-cored VT and an intelligent electronic device(IED) having the error compensating algorithm. The test results of the iron-cored electronic voltage transformers in Korea Electro-technology Research Institute(KERI) are presented.

  • PDF

Evaluation for Ratio Error of Voltage Transformer Comparator using Standard Resistors (표준저항기를 이용한 전압변성기 비교기의 비오차 평가)

  • Han, Sang-Gil;Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.412-416
    • /
    • 2008
  • We have developed the calibration technique of the VT comparator using nonreactive standard resistors, which evaluates both accuracy and linearity of the VT comparator by comparing experimental values with theoretical values. The correction values of VT comparator obtained by using both our method and wide ratio error VT are consistent within the expanded uncertainty. Furthermore the specification for ratio error of VT comparator have been revaluated.

Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement Equipment (전압변성기 비교 측정 장치의 비오차 및 위상각 오차의 직선성 평가기술)

  • 정재갑;박영태;권성원
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.470-474
    • /
    • 2004
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of burden of VT used. A method of evaluation for linearity of ratio error and phase angle error in VT measurement equipment have been developed using the standard resistance burdens, with negligible AC-DC resistance difference less than $10^-6$. These burden consists of five standard resistors, with nominal resistance of 100 $\Omega$, 1 k$\Omega$, 10 k$\Omega$, 100 k$\Omega$, and 1 M$\Omega$. The developed method has been applied in VT measurement equipment of industry and the validity of the developed method has been verified by showing the consistency of the result of linearity obtained using VT with wide ratio error.

Experimental Study on the Dielectric Breakdown Voltage with the Addition of Magnetic Nanoparticles in a Transformer Oil (변압기 오일에 자성나노입자 첨가에 따른 절연파괴전압 특성변화에 관한 실험적 연구)

  • Seo, Hyun-Seok;Lee, Won-Ho;Lee, Se-Hee;Lee, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1538-1539
    • /
    • 2011
  • In this study, we have investigated the dielectric breakdown by measuring AC (60Hz) breakdown strength of the fluids in accordance with IEC 156 standard and have compared the results with references. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 [kV] with the gap distance of 1.5mm between electrodes. In case of our transformer oil based magnetic fluids with 0.1% < ${\Phi}$(volume concentration of magnetic particles) <0.6%, the dielectric breakdown voltage shows above 30 [kV], which is 2.5 times higher than that of pure transformer oil. It can be explained by the changed ionization process by adding nanoparticles in pure transformer oil, which is due to trapped fast electrons and slow negative nanoparticles. Moreover, in case of the fluid with applied magnetic field, the dielectric breakdown voltage increases above 40 [kV], which is 3.3 times higher than that of pure transformer oil.

  • PDF

Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer (CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

Compensation of the secondary voltage of a coupling capacitor voltage transformer in the time-domain (히스테리시스 특성을 고려한 CCVT 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kim, Yeon-Hee;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.266-267
    • /
    • 2006
  • A coupling capacitor voltage transformer (CCVT) is used in extra high voltage and ultra high voltage transmission systems to obtain the standard low voltage signal for protection and measurement. To obtain the high accuracy at the power system frequency, a tuning reactor is connected between a capacitor and a voltage transformer (VT). Thus, no distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has some errors due to the transient components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of the CCVT in the time domain. With the values of the secondary voltage of the CCVT, the secondary and the primary currents are obtained; then the voltage across the capacitor and the tuning reactoris calculated and then added to the measured secondary voltage. The proposed algorithm includes the effect of the non-linear characteristic of the VT and the influence of the ferro-resonance suppression circuit. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle and the fault impedance.

  • PDF