• Title/Summary/Keyword: Standard k--$\varepsilon$Turbulence Model

Search Result 167, Processing Time 0.026 seconds

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

Analysis of a Vortex Structure Near the Strip Edge for Preventing Edge Zn Overcoation (단부 아연 과도금 방지를 위한 단부 와동 구조의 분석)

  • Cho, Choong-Won;Kim, Sang-Joon;Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1105-1113
    • /
    • 2003
  • In the gas wiping process of continuous hot-dip galvanizing, edge overcoating develops near the edge of the steel strip. The overcoating is supposed to occur due to the reduced impact pressure of wiping gas on the strip surface. The purpose of this study is to investigate the effect of edge vortex on the reduced impact pressure. Three-dimensional unsteady flows are simulated using a commercial code, STAR-CD. Standard k-$\varepsilon$ model is used as a turbulence model. It is found that an alternating vortex structure in the vicinity of strip edge is developed by buckling of opposed jet streams and that the reduced amount of impact pressure at strip edge becomes smaller as the air knife gets closer to the strip. The effect of edge baffle on the reduced impact pressure is also investigated.

The Turbulent Natural Convection in Membrane Type LNG Carrier Cofferdam (멤브레인형 LNG 수송선 코파담내의 난류 자연대류)

  • Chung, Han Shik;Jeong, Hyo Min;Kim, Kyung Kun;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.281-287
    • /
    • 1999
  • The turbulent natural convection in the membrane type LNG carrier cofferdam with heating points has been studied by numerical method. As the numerical methods, we introduced the three turbulence model, a standard $k-{\varepsilon}$ model and two case of a low Reynolds number models. The parameters considered for this study ore number and capacity of heating points i.e., $1{\leq}Ns{\leq}12$ and $1.0{\times}10^5{\leq}Qs(W/m^3){\leq}1.0{\times}10^8$. The results of the isotherms and velocity vectors have been represented for various parameters. The temperature and velocity at upper position in the space ore shown to be higher than those at lower position. For obtaining the optimal temperatures, $20{\sim}30^{\circ}C$ in the cofferdam space, the heating capacities show $2.0{\times}10^7W/m^3$ at g-heating points and $1.0{\times}10^7W/m^3$ at 12-points. The mean temperature in the cofferdam space can be expressed as a function of number and capacity of heating points.

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

A Study on the Effect of Sweep Angle of Axial Fan on Its Noise (축류송풍기의 스윕각이 소음에 미치는 영향에 대한 연구)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.365-370
    • /
    • 2000
  • A computational study on the effect of sweep angle of axial fan on its noise is performed in the present paper. The forward swept axial fan was designed by numerical optimization method incorporated with three dimensional flow analysis. The objective function was defined by the ratio of generation rate of turbulent kinetic energy to pressure head. And, two variables related with sweep angle distribution are used for design variables. The swept fan has better performance characteristics and noise level. The experimental result shows that spectrums of no-sweet and swept fans have differences in the blade passage frequency, especially in the broadband. And the overall noise level of swept fan is lower 10dB(A) than that of no-sweep fan. For the comparison of flow fields between no-sweep fan and swept fan, CFX-TASCflow computational fluid dynamics software is used. Standard k-${\varepsilon}$ model is used for the turbulence model. Distributions of pressure and turbulent kinetic energy distributions are compared in order to find what happen in the low-noise swept fan.

  • PDF

Numerical Analysis on Heat Transfer Characteristics and Pressure Drop in Plate Heat Exchanger (판형열교환기의 열전달특성 및 압력강하에 관한 해석적 연구)

  • Kim, K.R.;Kim, I.G.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2002
  • This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-$\varepsilon$ model. Computations have been carried out for a range of chevron angle from $30^{\circ}$ to $60^{\circ}$, inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases.

Three-Dimensional Computational Flow Analysis on Meteorological-Tower Shading Effect (풍황탑 차폐영향 분석을 위한 3차원 전산유동해석)

  • Rhee, Hui-Nam;Kim, Tae-Sung;Jeon, Wan-Ho;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • It is difficult to avoid measurement errors caused by the shading effect of the meteorological tower, which is used for wind resource assessment according to the IEC Standard. This paper presents a validation of the computational flow analysis results by comparing the results with the wind tunnel experiment conducted for Reynolds numbers in the $10^4$ to $10^5$ range, for the preparation of a database for use in an automatic method of correcting met-tower shading errors. A three-dimensional simulation employing the MP (Modified Production) $k-{\varepsilon}$ turbulence model predicted a wind speed deficit in the wake region according to minimum wind speed ratio, within an MAE (Mean Absolute Error) of 2.4%.

Effects of Geometric Parameters of a Bobsleigh on Aerodynamic Performance (봅슬레이의 형상변화가 공력성능에 미치는 영향)

  • Shim, Hyeon-Seok;Jung, Hyo-Yeon;Kim, Jun-Hee;Kim, Kwang-Yong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.233-240
    • /
    • 2015
  • Analysis of the aerodynamic performance of a bobsleigh has been performed for various types of bobsleigh body shape. To analyze the aerodynamic performance of the bobsleigh, three-dimensional Reynolds-averaged Navier-Stoke equations were used with the standard k-${\varepsilon}$ model as a turbulence closure. Grid structure was composed of unstructured tetrahedral grids. The radii of curvature of cowling, and height and length of front bumper at the tip on the drag coefficient were selected as geometric parameters. And, the effects of these parameters on the aerodynamic performance, i.e., the drag coefficient, were evaluated. The results shows that the aerodynamic performance is significantly affected by the height of front bumper and radius of curvature.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.