• Title/Summary/Keyword: Standard k-$\varepsilon$model

Search Result 239, Processing Time 0.023 seconds

Investigation of the Prediction Performance of Turbulence and Combustion Models for the Turbulent Partially-premixed Jet Flame (난류 부분예혼합 제트화염에 대한 난류 및 연소모델의 예측성능 검토)

  • Kim, Yu Jeong;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-43
    • /
    • 2014
  • The prediction performance of 9 model sets, which combine 3 turbulent models and 3 combustion models, was investigated numerically for turbulent partially-premixed jet flame. The standard ${\kappa}-{\varepsilon}$ (SKE), Realizable ${\kappa}-{\varepsilon}$ (RKE) and Reynolds stress model (RSM) were used as a turbulence model, and the eddy dissipation concept (EDC), steady laminar flamelet (SLF) and unsteady laminar flamelet model (ULF) were also adopted as a combustion model. The prediction performance of those 9 model sets was evaluated quantitatively and qualitatively for Sandia D flame of which flame structure was measured precisely. The flame length was predicted as, from longest to shortest, RSM > SKE > RKE, and the RKE predicted the flame length of the jet flame much shorter than experiment. The flame temperature was over predicted by the combination of RSM + SLF or RSM + ULF while the flame length obtained by RSM + SLF and RSM + ULF was well agreed with the experiment. The combination of SKE + SLF and SKE + ULF predicts well the flame length as well as the temperature distribution. The SKE turbulence model was most superior to the other turbulent models, and SKE + ULF showed the best prediction performance for the structure of turbulent partially-premixed jet flame.

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface (Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향)

  • 박종수;최병대;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

3-D Simulation of Air Flow in Cold Storage Room for Uniform Temperature Distribution (저온저장고 내부의 균일한 온도분포를 위한 3차원 공기유동 분석)

  • 성제중;고학균;조성인;양길모
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.279-286
    • /
    • 2000
  • Most of the domestic cold storage rooms are inefficient for agricultural products because of temperature gradients inside the storage rooms. Temperature gradients are developed mainly by improper airflow pattern inside the storage room, which is a main cause of the spoilage of the agricultural products. There proper airflow pattern is essential to minimize these temperature gradients and the spoilage. The performance and characteristics of a cold storage room were determined as a function of airflow pattern and temperature distribution in forced circulation cold storage room. A commercial CFD(computational fluid dynamics) code was used to simulate 3-D airflow in the cold storage room. Solving the flow equations for the storage room, a standard k-$\varepsilon$ turbulent model was implemented to calculate steady state turbulent velocity distribution. The CFD prediction results were compared with temperature measurements inside the cold storage room. In case of pallet storage, Temperature gradients inside pallet storage was reduced because the contact area of cold air expanded through an alley of airflow in storage. But is case of bulk storage, the last temperature of storage considerably rose more than the initial temperature of storage. The reason was that bulk storage didn't include any alley of airflow in storage.

  • PDF

Three-dimensional analysis of the flow through an axial-flow fan (축류송풍기의 삼차원 유동장 해석)

  • Kim, Gwang-Yong;Kim, Jeong-Yeop;Jeong, Deok-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

NUMERICAL ANALYSIS OF AN ARC PLASMA IN A DC ELECTRIC FURNACE

  • Lee Yeon Won;Lee Jong Hoon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.30-33
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid How in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a standard $k-\varepsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. from these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

Numerical Analysis of an Arc Plasma in a DC Electric Furnace

  • Lee, Yeon-Won;Lee, Jong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1251-1257
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid flow in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism onto account, that is radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, that are conservation equations of mass, momentum and energy together with the equations describing a standard k-${\varepsilon}$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. From these results, it can be concluded that higher arc current and longer arc length give high heat transfer

Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid (점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • When the systolic blood pressure is high, intermittent turbulence in blood flow appears in the aorta and carotid artery with stenosis during the systolic period. The turbulent blood flow is difficult to analyze using the Newtonian turbulence model due to the viscous characteristics of blood flow. As the shear rate is increased, the blood viscosity decreases by the viscoelastic properties of blood and a drag reduction phenomenon occurs in turbulent blood flow. Therefore, a new non-Newtonian turbulent model is required for viscoelastic fluid and hemodynamics. The main aims of this study were to develop a non-Newtonian turbulence model using the drag reduction phenomenon based on the standard $k-{\varepsilon}$ turbulent model for a general non-Newtonian fluid. This was validated with the experimental data and has a good tendency for non-Newtonian turbulent flow. In addition, the computation time and resources were lower than those of the low Reynolds number turbulent model. A modified turbulent model was used to analyze various turbulent blood flows.