• Title/Summary/Keyword: Standard Runoff Index (SRI)

Search Result 2, Processing Time 0.016 seconds

Development & Evaluation of Real-time Ensemble Drought Prediction System (실시간 앙상블 가뭄전망정보 생산 체계 구축 및 평가)

  • Bae, Deg-Hyo;Ahn, Joong-Bae;Kim, Hyun-Kyung;Kim, Heon-Ae;Son, Kyung-Hwan;Cho, Se-Ra;Jung, Ui-Seok
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • The objective of this study is to develop and evaluate the system to produce the real-time ensemble drought prediction data. Ensemble drought prediction consists of 3 processes (meteorological outlook using the multi-initial conditions, hydrological analysis and drought index calculation) therefore, more processing time and data is required than that of single member. For ensemble drought prediction, data process time is optimized and hardware of existing system is upgraded. Ensemble drought data is estimated for year 2012 and to evaluate the accuracy of drought prediction data by using ROC (Relative Operating Characteristics) analysis. We obtained 5 ensembles as optimal number and predicted drought condition for every tenth day i.e. 5th, 15th and 25th of each month. The drought indices used are SPI (Standard Precipitation Index), SRI (Standard Runoff Index), SSI (Standard Soil moisture Index). Drought conditions were determined based on results obtained for each ensemble member. Overall the results showed higher accuracy using ensemble members as compared to single. The ROC score of SRI and SSI showed significant improvement in drought period however SPI was higher in the demise period. The proposed ensemble drought prediction system can be contributed to drought forecasting techniques in Korea.

Development of Drought Index based on Streamflow for Monitoring Hydrological Drought (수문학적 가뭄감시를 위한 하천유량 기반 가뭄지수 개발)

  • Yoo, Jiyoung;Kim, Tae-Woong;Kim, Jeong-Yup;Moon, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.669-680
    • /
    • 2017
  • This study evaluated the consistency of the standard flow to forecast low-flow based on various drought indices. The data used in this study were streamflow data at the Gurye2 station located in the Seomjin River and the Angang station located in the Hyeongsan River, as well as rainfall data of nearby weather stations (Namwon and Pohang). Using streamflow data, the streamflow accumulation drought index (SADI) was developed in this study to represent the hydrological drought condition. For SADI calculations, the threshold of drought was determined by a Change-Point analysis of the flow pattern and a reduction factor was estimated based on the kernel density function. Standardized runoff index (SRI) and standardized precipitation index (SPI) were also calculated to compared with the SADI. SRI and SPI were calculated for the 30-, 90-, 180-, and 270-day period and then an ROC curve analysis was performed to determine the appropriate time-period which has the highest consistency with the standard flow. The result of ROC curve analysis indicated that for the Seomjin River-Gurye2 station SADI_C3, SRI30, SADI_C1, SADI_C2, and SPI90 were confirmed in oder of having high consistency with standard flow under the attention stage and for the Hyeongsan River-Angang station, SADI_C3, SADI_C1, SPI270, SRI30, and SADI_C2 have order of high consistency with standard flow under the attention stage.