• Title/Summary/Keyword: Standard Raman Spectrum

Search Result 4, Processing Time 0.027 seconds

A Basic Study for the Performance Evaluation of a Raman LiDAR Detector for Detecting Hydrogen Gas (수소 가스 검출용 라만 라이다 측정기의 성능 평가를 위한 기초 연구)

  • WONBO CHO;YUNKYU LIM;YANGKYUN KIM;BYOUNGJIK PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.205-211
    • /
    • 2023
  • Hydrogen gas is light and diffuses very quickly. Therefore, when a leakage accident occurs, the damage is great, so a technology that can quickly measure the leakage in the air at a long distance is needed. In order to develop hydrogen gas leaked in the atmosphere in a non-contact manner, an experiment was performed to measure hydrogen gas using a lidar technology using the Raman effect. Hydrogen Raman signals were detected using a UV LED light source, which is a Raman light source, and a spectrometer in the ultraviolet region including an optical filter in the 400-430 nm band. To develop this, a Raman lidar optical structure was designed to measure the hydrogen Raman signal at a certain distance, and the hydrogen Raman spectrum was confirmed using a standard gas to evaluate the performance of this optical structure. The linearity was found to be 0.99 using hydrogen standard gas (10, 50, 100, 500, 1,000 ppm). Accordingly, a Raman lidar capable of measuring hydrogen gas rapidly diffusing in the air in an open state was developed to improve the limitations of existing hydrogen sensors.

Deep UV Raman Spectroscopic Study for the Standoff Detection of Chemical Warfare Agents from the Agent-Contaminated Ground Surface (지표면 화학작용제 비접촉 탐지를 위한 단자외선 라만분광법 연구)

  • Choi, Sun-Kyung;Jeong, Young-Su;Lee, Jae Hwan;Ha, Yeon-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.612-620
    • /
    • 2015
  • Short-range detection of chemical agents deposited on ground surface using a standoff Raman system employing a pulsed laser at 248 nm is described. Mounted in a vehicle such as an NBC reconnaissance vehicle, the system is protected against toxic chemicals. As most chemicals including chemical warfare agents have unique Raman spectra, the spectra can be used for detecting toxic chemicals contaminated on the ground. This article describes the design of the Raman spectroscopic system and its performance on several chemicals contaminated on asphalt, concrete, sand, etc.

Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application (수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용)

  • Shinde, N.M.;Nam, Min Sik;Patil, U.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.97-101
    • /
    • 2016
  • ZnO has nanostructured material because of unique properties suitable for various applications. Amongst all chemical and physics methods of synthesis of ZnO nanostructure, the hydrothermal method is attractive for its simplicity and environment friendly condition. Nanostructure ZnO thin films have been successfully synthesized on fluorine doped tin oxide (FTO) substrate using hydrothermal method. A possible growth mechanism of the various nanostructures ZnO is discussed in schematics. The prepared materials were characterized by standard analytical techniques, i.e., X-ray diffraction (XRD) and Field-emission scanning electron microscopy (SEM). The XRD study showed that the obtained ZnO nanostructure thin films are in crystalline nature with hexagonal wurtzite phase. The SEM image shows substrate surface covered with nanostructure ZnO nanrod. The UV-vis absorption spectrum of the synthesized nanostructure ZnO shows a strong excitonic absorption band at 365 nm which indicate formation nanostructure ZnO thin film. Photoluminescence spectra illustrated two emission peaks, with the first one at 424 nm due to the band edge emission of ZnO and the second broad peak centered around 500 nm possibly due to oxygen vacancies in nanostructure ZnO. The Raman measurements peaks observed at $325cm^{-1}$, $418cm^{-1}$, $518cm^{-1}$ and $584cm^{-1}$ indicated that nanostrusture ZnO thin film is high crystalline quality. We trust that nanostructure ZnO material can be effectively will be used as a highly active and stable phtocatalysis application.

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.