• Title/Summary/Keyword: Standard Platform

Search Result 744, Processing Time 0.022 seconds

안전한 센서 네트워크를 위한 스트림 암호의 성능 비교 분석 (Performance Analysis and Comparison of Stream Ciphers for Secure Sensor Networks)

  • 윤민;나형준;이문규;박근수
    • 정보보호학회논문지
    • /
    • 제18권5호
    • /
    • pp.3-16
    • /
    • 2008
  • 무선 센서 네트워크는 센서 노드 또는 모트(mote)라 불리는 소형 장치들로 이루어진 무선 네트워크이다. 최근 센서 네트워크에 대한 연구가 활발한 가운데 센서 네트워크에서의 보안에 관한 연구 또한 활발히 진행되고 있다. 센서 노드 및 센서 네트워크 상의 정보를 안전하게 저장, 전송하기 위해서는 암호 알고리즘의 구현이 필요하며, 이 암호 알고리즘들은 센서 노드의 한정된 자원을 효과적으로 활용할 수 있도록 효율적인 구현이 필수적이다. 센서 노드 상에서 이용될 수 있는 암호로는 TinyECC 등의 공개키 암호와 AES와 같은 표준 블록 암호가 있으나, 스트림 암호는 최근에서야 eSTREAM 프로젝트에서 표준화가 완료되어 아직 센서 노드상에서 사용 가능성이 명확하지 않은 실정이다. 이에 본 논문에서는 eSTREAM의 2단계와 3단계에 채택되었던 10개 소프트웨어 기반 암호들 중 9개의 암호들을 MicaZ 모트 상에 구현하여 성능을 비교하고, 특히 최종적으로 eSTREAM에 채택된 SOSEMANUK, Salsa20, Rabbit을 포함한 6개 암호에 대해서는 MicaZ에 적합하도록 최적화하였다. 또한 참조 구현으로써 하드웨어용 스트림 암호 및 AES-CFB에 대한 실험 결과도 제시한다. 본 논문의 실험에 따르면, 대부분의 스트림 암호가 약 31Kbps - 406Kbps의 암호화 성능을 보임으로써 센서 노드에서 사용하기에 큰 무리가 없음을 확인할 수 있었다. 특히 최종적으로 채택된 SOSEMANUK, Salsa20, Rabbit의 경우 센서 노드에 적합한 128바이트 크기의 작은 패킷의 암호화에서 각각 406Kbps, 176Kbps, 121Kbps의 속도를 보여주고, 70KB, 14KB, 22KB의 ROM및 2811B, 799B, 755B의 RAM을 사용함으로써, 106Kbps의 속도를 보여준 소프트웨어 기반 AES에 비해 우수한 성능을 보임을 알 수 있었다.

미술관 이미지저작권 아카이브 모델 연구 (A Study on Image Copyright Archive Model for Museums)

  • 남현우;정성인
    • 한국과학예술포럼
    • /
    • 제23권
    • /
    • pp.111-122
    • /
    • 2016
  • 본 연구의 배경 및 목적은 다음과 같다. 미술관에서 생성되는 미술 콘텐츠 생명주기 전반에 걸친 저작권 서비스 연구개발의 필요성과 창조산업에서 이미지저작권 콘텐츠 유통시장 활성화와 저작권 서비스 관리체계 수립의 필요성에 의해, 이미지저작권 보호 및 이용 활성화를 위한 미술관 이미지저작권 아카이브 모델을 설정하기 위해 다학제적으로 진행된 융복합 연구이다. 본 연구의 연구방법 및 내용, 결과는 다음과 같다. 국내 1,000여개의 뮤지엄(박물관, 미술관, 전시관 등)의 저작권료에 대한 산정, 분배, 정산, 모니터링에 대한 기준체계를 제안하여 이미지 저작물의 이용 활성화 및 재활용을 통한 미술콘텐츠 생태계 투명화 및 효율성 향상화를 위해서 다양한 제안이 이루어졌다. 우선, 이미지저작권 아카이브 모델의 내용설계 및 구조설계를 제안하였으며, 프로토타입 시뮬레이션, 실현 시뮬레이션, 모델 가동 시뮬레이션을 위하여, 미술관 미술콘텐츠 유통 서비스 플랫폼을 제안하여, 미술 콘텐츠 저작권료 프로세스 모델을 설정하였다. 미술관 소장품 및 미술작품 유통 과금 기술 개발과 저작권 자동분배 및 정산 엔진 개발은 이미지 콘텐츠에 대한 과금 체계 및 기술 개발이 미약하기 때문에 기본 프레임워크는 기존 콘텐츠 과금 프레임워크를 모델로 사용하였다. 궁극적으로는 미술작가, 미술관 학예사, 유통업체 등이 사용가능한 이미지저작권 아카이브 모델을 제안하였다. 사업화 전략에서는 미술관 이미지저작권 아카이브 모델의 틈새시장 침투전략(Niche penetration strategy)을 제안하였다. 판매확대 전략에서는 미술관 아카이브 시스템의 유동적 연결을 통하여, B2B, B2G, B2C, C2B 형태의 이미지 거래를 효율적으로 진행되게 하며, 이미지 저작물의 관리가 통제 가능한 비즈니스 모델이 수립되었다. 향후 혹은 앞으로의 과제는 미술관에서 소장하고 있는 소장품 및 신규 창작 작품의 미술 콘텐츠 분쟁 예방 및 유통 및 활용에 대한 정보 제공을 통해, 미술작품에 대한 이미지저작권자와 소유자간의 분쟁 등을 최소화하고, 미술품 저작물의 관리성이 향상될 것으로 기대된다. 또한 미술관의 소장품 및 신규작품에 대한 아카이브에 대한 가이드라인이 제공되어, 이미지저작권 등록 증대가 예상되며, 이미지저작권 유통 서비스에 대한 저작권료, 과금, 분배, 정산 등 다양한 융합적 비즈니스 활용이 가능해 질 것이다.

국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로 (The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects)

  • 이도연;이재성;전승표;김근환
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.127-147
    • /
    • 2020
  • 세계는 신형 코로나바이러스 감염증(COVID-19)으로 수 많은 인명 피해와 경제적 손실을 기록하고 있는 상황이다. 우리나라 정부는 연구개발(Research & Development)을 통해 국가 감염병 위기를 극복하려는 전략을 수립하고 실행하기 위한 투자방향을 수립하였다. 기존 기술분류나 과학기술 표준분류에 따른 통계를 활용하면 특정 R&D 분야의 특이점 및 변화를 발견하기 어렵다는 한계가 존재해왔다. 최근 우리나라 감염병 연구개발 과제를 대상으로 수요자의 목적에 맞게 분류체계를 수립하고 연구비 비교 분석을 통해 투자가 요구되는 연구 분야를 제시하는 연구들이 진행되었다. 하지만 현재 국가 보건 안보와 신성장 산업육성이라는 목표를 달성하기 위한 실행방안으로 요구되고 있는 전염병 연구분야의 국가간 협력전략 수립에 필요한 정보를 체계적으로 제공하고 있지 못한 상황이다. 따라서 국가 공동 연구개발 전략 수립을 위한 분류체계와 분류모델기반의 정보서비스에 대한 연구가 요구되고 있다. 우선 감염병관련 NTIS 과제데이터를 기반으로 정성분석을 통해 7개의 분류체계를 도출하였다. 스코퍼스(Scopus) 데이터와 양방향 RNN모델을 사용하여, 분류체계 모델을 학습시켰다. 최종적인 모델의 분류 성능은 90%이상의 높은 정확도와 강건성을 확보하였다. 실증연구를 위해 주요 국가의 코로나바이러스 연구개발 과제를 대상으로 전염병 분류체계를 적용하였다. 주요 국가의 감염병(코로나바이러스) 연구개발 과제를 분류체계별로 분석한 결과, 세계적으로 유행하는 바이러스의 예상치 못한 창궐이 확산되는 속도에 비해 백신과 치료제 개발이 제대로 이뤄지지 않는 원인의 배경을 간접적으로 확인할 수 있었다. 국가별 비교분석을 통해 미국과 일본은 상대적으로 모든 영역에 골고루 연구개발 투자를 하고 있는 것으로 나타난 반면, 유럽은 상대적으로 특정 연구분야에 많은 투자를 하는 집중화 전략을 취하는 것으로 나타났다. 동시에 주요 국가의 코로나 바이러스 주요 연구조직에 대한 정보를 분류체계별로 제공하여 국제 공동R&D 전략의 기초정보를 제공하였다. 본 연구 결과를 통해 세 가지 정책적 의미를 도출할 수 있다. 첫째, 데이터기반 과학기술정책 관점에서 수요자 관심분야에 대한 국가 R&D사업의 정보를 글로벌 기준으로 문서를 분류하는 방안을 제시하였다. 둘째, 감염병관련 국가 R&D사업 영역에 대한 정보분석 서비스 기획의 기반을 마련하였다. 마지막으로 국가 감염병 R&D 분류체계 수립을 통해 분류 체계의 궁극적 목표인 산업, 기업, 정책 정보를 제공할 수 있는 기반을 마련한 것이다.

사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법 (Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering)

  • 타이쎄타;하인애;조근식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.1-20
    • /
    • 2013
  • 소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.