• 제목/요약/키워드: Standard Dataset

검색결과 187건 처리시간 0.025초

SNOMED CT 브라우저에서 검색 결과의 재구성 기법 (A Restructuring Method for Search Results of SNOMED CT Browser)

  • 류우석
    • 대한임베디드공학회논문지
    • /
    • 제10권3호
    • /
    • pp.165-170
    • /
    • 2015
  • SNOMED CT browser is a browsing tool for searching clinical terms in SNOMED CT which is a standard terminology set used worldwide. The search result view of previous browsers merely list up candidate terminologies. The problem is that most of users become confused about how to select an appropriate term from the list. This leads serious waste of medical recoding cost. This paper discusses characteristics of SNOMED CT dataset and proposes a novel design of enhanced result view by restructuring the results using relationships of SNOMED CT concepts. Using the proposed scheme, medical doctors or officers can select appropriate terms more efficiently and can reduce overall recording time.

연관분석을 이용한 마코프 논리네트워크의 1차 논리 공식 생성과 가중치 학습방법 (First-Order Logic Generation and Weight Learning Method in Markov Logic Network Using Association Analysis)

  • 안길승;허선
    • 산업경영시스템학회지
    • /
    • 제38권1호
    • /
    • pp.74-82
    • /
    • 2015
  • Two key challenges in statistical relational learning are uncertainty and complexity. Standard frameworks for handling uncertainty are probability and first-order logic respectively. A Markov logic network (MLN) is a first-order knowledge base with weights attached to each formula and is suitable for classification of dataset which have variables correlated with each other. But we need domain knowledge to construct first-order logics and a computational complexity problem arises when calculating weights of first-order logics. To overcome these problems we suggest a method to generate first-order logics and learn weights using association analysis in this study.

머신러닝 기반 멀티모달 센싱 IoT 플랫폼 리소스 관리 지원 (Machine learning-based Multi-modal Sensing IoT Platform Resource Management)

  • 이성찬;성낙명;이석준;윤재석
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.93-100
    • /
    • 2022
  • In this paper, we propose a machine learning-based method for supporting resource management of IoT software platforms in a multi-modal sensing scenario. We assume that an IoT device installed with a oneM2M-compatible software platform is connected with various sensors such as PIR, sound, dust, ambient light, ultrasonic, accelerometer, through different embedded system interfaces such as general purpose input output (GPIO), I2C, SPI, USB. Based on a collected dataset including CPU usage and user-defined priority, a machine learning model is trained to estimate the level of nice value required to adjust according to the resource usage patterns. The proposed method is validated by comparing with a rule-based control strategy, showing its practical capability in a multi-modal sensing scenario of IoT devices.

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • 한국축산식품학회지
    • /
    • 제43권2호
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

한국 남성의 고혈압에 대한 특징 선택 기반 위험 예측 (Feature selection-based Risk Prediction for Hypertension in Korean men)

  • 홍고르출;김미혜
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.323-325
    • /
    • 2021
  • In this article, we have improved the prediction of hypertension detection using the feature selection method for the Korean national health data named by the KNHANES database. The study identified a variety of risk factors associated with chronic hypertension. The paper is divided into two modules. The first of these is a data pre-processing step that uses a factor analysis (FA) based feature selection method from the dataset. The next module applies a predictive analysis step to detect and predict hypertension risk prediction. In this study, we compare the mean standard error (MSE), F1-score, and area under the ROC curve (AUC) for each classification model. The test results show that the proposed FIFA-OE-NB algorithm has an MSE, F1-score, and AUC outcomes 0.259, 0.460, and 64.70%, respectively. These results demonstrate that the proposed FIFA-OE method outperforms other models for hypertension risk predictions.

Automated Methodology for Linking BIM Objects with Cost and Schedule Information by utilizing Geometry Breakdown Structure (GBS)

  • Lee, Kwangjin;Jung, Youngsoo
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.637-638
    • /
    • 2015
  • There has been growing interests in life-cycle project management in the construction industry. A lot of attention is given to Building Information Modeling (BIM) which stores and uses a variety of construction information for the life cycle of project management. However, due to the additional workload arising from BIM, its expected effects versus its input costs are still under discussion in practice. As an attempt to address this issue, one of previous studies suggested an automated linking process by developing Standard Classification Numbering System (SCNS) and Geometry Breakdown Structure (GBS) to enhance the efficiency of integration process of BIM objects, cost, and schedule. Though SCNS and GBS facilitates identifying all different dataset, making object sets and linking schedule activities still needs to be manually done without having an automated tool. In this context, the purpose of this paper is to develop and validate a fully automated integration system for 3D-objects, cost, and schedule. A prototype system for single family homes (Hanok) was developed and tested in order to verify its efficiency.

  • PDF

Quick and easy game bot detection based on action time interval estimation

  • Yong Goo Kang;Huy Kang Kim
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.713-723
    • /
    • 2023
  • Game bots are illegal programs that facilitate account growth and goods acquisition through continuous and automatic play. Early detection is required to minimize the damage caused by evolving game bots. In this study, we propose a game bot detection method based on action time intervals (ATIs). We observe the actions of the bots in a game and identify the most frequently occurring actions. We extract the frequency, ATI average, and ATI standard deviation for each identified action, which is to used as machine learning features. Furthermore, we measure the performance using actual logs of the Aion game to verify the validity of the proposed method. The accuracy and precision of the proposed method are 97% and 100%, respectively. Results show that the game bots can be detected early because the proposed method performs well using only data from a single day, which shows similar performance with those proposed in a previous study using the same dataset. The detection performance of the model is maintained even after 2 months of training without any revision process.

부도 예측을 위한 앙상블 분류기 개발 (Developing an Ensemble Classifier for Bankruptcy Prediction)

  • 민성환
    • 한국산업정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.139-148
    • /
    • 2012
  • 분류기의 앙상블 학습은 여러 개의 서로 다른 분류기들의 조합을 통해 만들어진다. 앙상블 학습은 기계학습 분야에서 많은 관심을 끌고 있는 중요한 연구주제이며 대부분의 경우에 있어서 앙상블 모형은 개별 기저 분류기보다 더 좋은 성과를 내는 것으로 알려져 있다. 본 연구는 부도 예측 모형의 성능개선에 관한 연구이다. 이를 위해 본 연구에서는 단일 모형으로 그 우수성을 인정받고 있는 SVM을 기저 분류기로 사용하는 앙상블 모형에 대해 고찰하였다. SVM 모형의 성능 개선을 위해 bagging과 random subspace 모형을 부도 예측 문제에 적용해 보았으며 bagging 모형과 random subspace 모형의 성과 개선을 위해 bagging과 random subspace의 통합 모형을 제안하였다. 제안한 모형의 성과를 검증하기 위해 실제 기업의 부도 예측 데이터를 사용하여 실험하였고, 실험 결과 본 연구에서 제안한 새로운 형태의 통합 모형이 가장 좋은 성과를 보임을 알 수 있었다.

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.