• 제목/요약/키워드: Standard $k-{\varepsilon}$ turbulence model

검색결과 167건 처리시간 0.026초

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.

헬리컬 노즐의 피치각에 따른 볼텍스 튜브의 성능특성에 관한 연구 (A Numerical Study on the Effect of Pitch Angle of Helical Nozzle on the Vortex Tube Performance Characteristics)

  • 오영택;김귀순
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.11-17
    • /
    • 2016
  • In this paper, a numerical analysis was performed to investigate the effect of the pitch angle of a helical nozzle on the performance characteristics of a vortex tube. Three-dimensional numerical simulation has been performed with standard $k-{\varepsilon}$ turbulence model by using FLUENT 13.0. The effect of the pitch angle of helical nozzle was described in term of ${\beta}$. A CFD analysis was performed on ${\beta}=0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. In order to realize the influence of ${\beta}$ on performances of the vortex tube. Computation results were expressed by the ${\beta}-{\Delta}T_{h,c}$ graph and radial profiles of axial velocity and swirl velocity. The results showed that ${\beta}$ which improves energy separation capacity of vortex tube was $5^{\circ}$ at ${\alpha}=0.33$, 0.5 and $10^{\circ}$ at ${\alpha}=0.33$. Besides, It was confirmed that the results were closely related to axial velocity and swirl velocity.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

CFD 모델을 이용한 단순 스프링클러 헤드 주위의 액막 유동해석 (Numerical Analysis of a Liquid Sheet Flow around a Simplified Sprinkler Head Using a CFD Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제30권6호
    • /
    • pp.111-117
    • /
    • 2016
  • 본 연구는 스프링클러 헤드 근처에서 형성되는 액막의 자유표면 유동에 대해 CFD 모델을 적용하여 해석하고 스프링클러의 초기분무 특성 예측을 위한 기존 이론식의 결과와 비교를 통해 이론 모델의 타당성을 검토하였다. CFD 해석은 상용 해석프로그램인 CFX 14.0을 이용하였으며 노즐과 디플렉터로 이루어진 단순형상에 대해 표준난류모델과 VOF법을 적용하여 해석을 수행하였다. 평판부의 디플렉터 끝단에서 속도분포는 CFD 해석과 경험식이 매우 잘 일치된 결과를 보였으나 기하학적 형상이 복잡한 부분에서는 속도분포의 차이를 보였다. 이론모델에서 예측된 평균액적크기는 실제 스프링클러 헤드에서 측정된 평균액적크기에 대한 이전 연구결과와 큰 차이를 보였다. 그러나 이론 모델은 스프링클러 헤드의 초기 액적형성과정의 메커니즘을 이해하고 실험적 접근이 용이하지 않은 상황에서 분무 액적의 특성을 예측하는데 유동한 도구로 활용될 수 있다.

큐벡시 스토커 소각로 2차원 비반응 유동장 수치해석 (A Numerical Study of the 2-D Cold Flow for a Qubec City Stoker Incinerator)

  • 박지영;송은영;장동순
    • 에너지공학
    • /
    • 제2권3호
    • /
    • pp.268-275
    • /
    • 1993
  • 수치해석 방법에 의해 큐백시의 스토커 소각로 유동장을 분석하였다. 수치모사의 변수는 큐백시의 스토커 소각로를 중심으로 한 5가지 내부 형상, 1차공기 속도, 2차공기 속도 및 주입각, 출구면적을 고려하였다. 검사체적에 기초한 Patankar의 유한차분 방법을 사용한 본 논문에서는 power-law scheme과 SIMPLEC 알고리즘을 사용했으며 난류 유동은 표준 k-e 모델을 이용했다. 소각로 유동장 분석을 위해서 재순환 영역의 크기, 난류 점성계수 및 이차공기의 질량분율 분포, 압력강하를 계산했다. 계산 결과는 물리적 의미에 잘 맞게 나타났으며, 큐백시의 스토커 소각로가 다른 내부 형상의 소각로에 비해 상부에 강한 난류를 가진 재순환 영역을 형성하였다.

  • PDF

고압 호스에서 굽힘의 각도가 압력 변화에 미치는 영향에 대한 수치해석적 연구 (Numerical Study on The Effect of Bending Angle on Pressure Change in High Pressure Hose)

  • 홍기배;김민석;유홍선
    • 한국산업융합학회 논문집
    • /
    • 제25권1호
    • /
    • pp.61-70
    • /
    • 2022
  • Fire damage time in high-rise buildings and wildland fire increasing every year. The use of high-pressure fire pumps is required to effectively extinguish fires. Reflecting the curvature effect of the fire hose occurring at the actual fire fighting site, this study provides a database of pressure drop, discharge velocity and maximum discharge height through C FD numerical analysis and it can provide using standards for fire extinguishing. Two Reynolds numbers of 200000 and 400000 were numerically analyzed at 0° -180° bending with water of 25℃ as a working fluid in hoses with a diameter of 65mm, a length of 15m, and a radius of curvature of 130mm. Realizable k-ε turbulence model was used and standard wall function was used. The pressure drop increases as the bending angle increases, and the maximum value at 90° and then decreases. The increasing rate is greater than the decrease. The velocity of the secondary flow also decreases after having the maximum value at 90°. The decreasing rate is greater than the increase. The turbulent kinetic energy increases to 120° and decreases with the maximum value. Pressure drop, velocity of the secondary flow, and turbulence kinetic energy are measured larger in the second bending region than in the first bending region.

NACA 00XX 익형에 대한 Gurney 플랩의 영향 (The Effect of the Gurney Flap on NACA 00XX Airfoil)

  • 유능수
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.59-65
    • /
    • 2002
  • The objective of this study is to provide the quantitative and qualitative computational data about the aerodynamic performance of Gurney flap on NACA 00XX airfoils and to show the optimum Gurney flap height for each airfoil. The test was performed on 7 different airfoils from NACA 0006 to NACA0024, which have a 3% chord(=c) thickness interval. For every NACA 00XX airfoil, Gurney flap heights were changed by 0.5% or 0.25% chord interval from 0 to 2.0%c to study their effects. The aerodynamic characteristics of clean and Gurney flap airfoil were compared, and the influences of Gurney flap on each airfoil were compared. As a CFD (Computational Fluid Dynamics) solver, FLUENT, based on Navier-Stokes code, was used to calculate the flow field around the airfoil. The fully-turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. The test results showed that Gurney flap increased the lift coefficient much more than the drag coefficient over a certain range of the lift coefficient, so the lift-to-drag ratio, which is the important index of airfoil performance, was increased. Based on the test results, the relationship between the airfoil thickness and the optimum Gurney flap heights was suggested.

  • PDF

에어댐의 높이가 차체 표면의 압력변화에 미치는 영향 (Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface)

  • 박종수;김성준
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF