• Title/Summary/Keyword: Stand-alone wind system

Search Result 77, Processing Time 0.034 seconds

Inverstigation of Thermal Aging Effect of Battery for Stand-Alone Type Wind Power Generation system (독립형 풍력발전 시스템용 축전지 운전 특성 및 노화평가 시험)

  • Kim, Hi-Jung;Ju, Chan-Hong;Lee, Jun-Hyun;Song, Seung-Ho;Shinn, Chan;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.129-132
    • /
    • 2002
  • 대체 에너지(태양광, 풍력등)의 전력저장 시스템으로 널리 사용되는 겔형(Gel Type) 밀폐형 연(鉛)축전지의 노화 특성 평가 및 충전회로에 관하여 연구하였다. 납 합금을 이용한 기판 주조 기술과 전해액(Gel) 배합기술이 축전기 성능과 수명을 좌우하며 또한 배터리 충전 시스템에 따른 온도 상승이 치명적인 영향을 미치게 된다. 따라서 본 연구에서는 적외선 열화상 장치를 이용한 내부 열원 추적에 의해 노화정도를 측정하며 축전지 수명시험을 통해 입수한 데이터와 비교 평가하고자 한다. 현재 실험실 충방전 수명시험을 마치고 (주)코윈텍이 부안 해창 공원에 설치한 30kW급 풍력발전 시스템에 적용하여 Field Test를 시험중이다.

  • PDF

Design and Implementation of Power Storage and Conversion Circuit for Continuous Operation of Stand-Alone Type Wind Power Generation System (소형 풍력 발전시스템의 연속 독립운전을 위한 전력 저장 및 변환 장치의 설계 및 구현)

  • Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong;Shin, Chan;Oh, Young-Jin;Kim, Sung-Ju;Lee, Nae-Chel
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.343-345
    • /
    • 2001
  • 새로운 대체 에너지원으로 주목받고 있는 풍력 에너지의 효율적인 이용을 위하여 기개발되어 운용중인 30kW급 수직-수평축 통합형 풍력발전시스템을 대상으로 낙도 지역 등에서 사용할 수 있는 독립형 전원장치를 설계하였다. 설계된 시스템은 무보수 밀패형 배터리와 자체 개발한 배터리 충전 제어 장치 및 교류 전원 출력용 인버터로 구성되며 장시간 바람이 불지 않는 경우에도 양질의 전원을 연속적으로 부하에 공급할 수 있도록 설계되었다.

  • PDF

Induction Generator Using PWM Converter and Its Small-Scale Power Applications to Variable-Speed Renewable-Energy Generation

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper describes a simple control structure and power conditioning system for an indirect vector controlled stand-alone induction generator (IG) used to operate under variable speed. The required reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM converter size. The vector control structure for the variable speed IG power conditioning system compensates for changes in the electrical three-phase and DC loads while considering the magnetizing curve of the IG. The vector control structure is developed to regulate the DC link voltage of the PWM converter and the IG output voltage. The experimental and simulated performance results of the IG power conditioning system at various speeds and loads are given and show that this proposed scheme can be used efficiently for a variable speed, wind energy conversion system.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Wind load analysis of Structure for Folding Solar Power System (접이식 태양광 발전 구조물의 풍하중해석)

  • Son, Chang-Woo;Kim, Tae-Kyun;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2018
  • A folding solar power system is a stand-alone system and is a structure with solar panels attached. It consists of supporting parts and folding parts for ease of movement. While the efficiency of solar panels is also important to produce electricity by maximizing the power efficiency of solar panels, the most important thing is structure stability. The folding solar power structure intended to be developed in this study is a collapsible structure that is easy to move and install into systems that can produce electricity from grid to independent. Since these structures are installed outdoors, wind loads, snow cover, etc. In this paper, the wind loads most affected by the folding solar power generation structure were obtained using the MeshFree Finite Element Method. MeshFree is a program that makes it easier for users to interpret by simplifying the mesh tasks required by an existing analysis. The analysis showed that the greater the angle of inclination of the wind to the ground, the greater the wind load. In addition, reliability was ensured by wind load testing.

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.