• Title/Summary/Keyword: Stand-alone System

Search Result 455, Processing Time 0.025 seconds

Demonstration of system to combat desertification using renewable energy (신재생에너지를 이용한 사막화 방지 시스템 실증 (몽골))

  • Kim, Man-Il;Lee, Seung-Hun;Whang, Jung-Hun;Cho, Woon-Sic;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.73-76
    • /
    • 2009
  • Generally, wind or solar power system is operated as a stand-alone power system, the efficiency of which could be higher by designing wind-solar combined system considering average wind speed and solar radiation of the desert region, Mongolia. This system is designed to generate electricity for power users and pumps the ground water for irrigation using deep well pump. The ground water can be used for farming or forestation where there is no or little irrigation system. In connection with this study, a renewable energy park, Green Eco Energy Park, was developed at about 50km east of Ulaanbaatar. 3 sets of 10kW wind power generator and 70 kW of solar power module were installed there. The electricity generated from the system is used to on-site office building and deep well pump for ground water pumping. A 10kW stand-alone solar pumping system, which has no rechargeable battery system, is installed to pump the ground water with the amount of generated power. The ground water is stored in 3 artificial ponds and then it is used for raising nursery tree and farming. The purpose of this study is to provide a possible energy solution to desert regions where there is no or little power system. The system also supply power to ground water pump, and the water can be used for farming and forestation, which will also be a solution of preventing desertification or spreading of desert area.

  • PDF

Design and Implementation of 3-Tier App Development Training System (3-Tier App개발 교육시스템 설계와 구현)

  • Chang, Young-Hyun;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.265-270
    • /
    • 2014
  • This study in coping with the current trend is to propose the environment for training 3-Tier App development being focused on the system to develop mobile applications where its related developers are scarce. Design and implementation of training system for the development of 3-Tier App in this paper is to realize the environment for software development for colleges as same as that in IT companies. For 3-Tier App development training system, 3 students with 3 computers work as a group. The above-mentioned 3 computers include a computer for development, Gateway server, and DB server together with legacy system. Also, each of the 3 students shall be given roles of the foregoing sections. We have educated 3-Tier App training system as a practical class for 64 students in junior students of computer information major. Through training session, it was confirmed that we can foster the students as custom-made talents who understand company's development environment. Also, the Comparison of 3-Tier and Stand-alone App Development Training System for 10 distinct description, we know that 3-Tier app development training system was very superior to stand-alone app development training system in the educational effects.

An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery

  • Shiva, Navid;Rahiminejad, Abolfazl;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.67-84
    • /
    • 2020
  • Given the recent surge of interest towards utilization of renewable distributed energy resources (DER), in particular in remote areas, this paper aims at designing an optimal hybrid system in order to supply loads of a village located in Esfarayen, North Khorasan, Iran. This paper illustrates the optimal design procedure of a standalone hybrid system which consists of Wind Turbine Generator (WTG), Photo Voltaic (PV), Diesel-generator, and Battery denoting as the Energy Storage System (ESS). The WTGs and PVs are considered as the main producers since the site's ambient conditions are suitable for such producers. Moreover, batteries are employed to smooth out the variable outputs of these renewable resources. To this end, whenever the available power generation is higher than the demanded amount, the excess energy will be stored in ESS to be injected into the system in the time of insufficient power generation. Since the standalone system is assumed to have no connection to the upstream network, it must be able to supply the loads without any load curtailment. In this regard, a Diesel-Generator can also be integrated to achieve zero loss of load. The optimal hybrid system design problem is a discrete optimization problem that is solved, here, by means of a recently-introduced meta-heuristic optimization algorithm known as Lightning Attachment Procedure Optimization (LAPO). The results are compared to those of some other methods and discussed in detail. The results also show that the total cost of the designed stand-alone system in 25 years is around 92M€ which is much less than the grid-connected system with the total cost of 205M€. In summary, the obtained simulation results demonstrate the effectiveness of the utilized optimization algorithm in finding the best results, and the designed hybrid system in serving the remote loads.

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2195-2196
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.563-564
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server Fourth one was device solver. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this Property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1229-1230
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server. Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer in main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Implementation of PC based Motor Fault Diagnosis System (PC 기반 전동기 고장 진단 시스템의 구현)

  • Doo, Seung-Ho;Park, Jin-Bae;Kwak, Ki-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1689-1690
    • /
    • 2006
  • This study is for implementation of PC based Motor fault diagnosis system. By using harmonics and current signals of the motor, this system diagnoses the motor condition by accumulated harmonic contribution rate. In this proposed system that was composed of 5 parts. A sensor, connection box, evaluation board, device server, and main computer are those. There were two types of sensor, one was harmonic sensor the other was current sensors. The signal was acquired by sensor, and transferred to evaluation board. Second one is connection box. Because the output type of sensor and input type of evaluation board is different, connection box was necessary. Third one was evaluation board. The signal from the sensor was converted to digital signal in evaluation board. And this signal was transferred to device server. Fourth one was device server Device server transferred the data from evaluation board to main computer. And the last one was other parts controlled by main computer. In main computer, there were communication and diagnosis algorithms. The result was derived by main computer. In the result, there were 12 categories and 5 levels of motor conditions. The proposed system had some advantages comparing with stand alone type commercial motor fault diagnosis system. The first, by using remote access it was easier to get the conditions of motor. The second, there was no need to handle the sensors when users measured the motor signals. By this property, no one was necessary at motor location site. The third, this system was less restricted by times and places than commercial stand alone type diagnosis system. Therefore users can operate this system only using the main computer. Once the sensors are installed at the motor, users doesn't need to move to check up the condition of motors. Moreover, if there is ethernet hub, many motors can be not only diagnosed at once but also decreased its cost.

  • PDF

Behavior Analysis of a Self Excited Induction Generator with Various Loads for a Hybrid Electric Propulsion System (하이브리드 전기추진시스템 구축을 위한 SEIG의 출력 특성 분석)

  • Yang, Joo-Ho;Choi, Gyo-Ho;Lee, Jae-Min;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • This paper analyzes the output characteristics of a self excited induction generator with isolated mode according to change of its speeds and loads for building a hybrid electric propulsion system in special purpose ships by using power take off. The induction generators are being considered as an alternative choice to the well-developed generators because of their lower unit cost, inherent ruggedness, operational and maintenance simplicity. However, the generator working by stand alone has a few problems that the reactive power is required to establish the air gap magnetic flux, and the induced voltage and magnetizing current fluctuate when the load is varied. In spite of its advantages, basic design data of the capacitor bank and behaviors of the output characteristics of the generator are not sufficient for the system. Based on the operating condition(speed range of main engine) of the target boat, a reduced experimental equipment system was constructed to analyze the output characteristics of the SEIG. And a suitable capacitor bank of a stand-alone generator and its output characteristics under various loads was investigated in detail through these experiments. According to the experimental result, it was confirmed that the capacitor bank should be $70{\mu}F{\sim}100{\mu}F$, and the proper SEIG induced voltage should be DC 80 V ~ 250 V in order to storage electrical energy into a battery.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

A review of nanomaterials based membranes for removal of contaminants from polluted waters

  • Amin, Muhammad T.;Alazba, Abdulrahman A.
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.123-146
    • /
    • 2014
  • Safe water has becoming a competitive resource in many parts of the world due to increasing population, prolonged droughts, climate change etc. The development of economical and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Nanomaterials have unique characteristics e.g., large surface areas, size, shape, and dimensions etc. that make them particularly attractive for removing various contaminants from polluted waters. Nanotechnology based multifunctional and highly efficient membrane processes are providing affordable solutions in the new era that do not rely on large infrastructures or centralizes systems. The objective of the current study is to review the possible applications of the membrane based nanomaterials/composites for the removal of various contaminations from polluted waters. The article will briefly overview the availability and practice of different nanomaterials based membranes for removal of bacteria and viruses, organic compounds and inorganic solutes etc. present in surface water, ground water, seawater and/or industrial water. Finally, recommendations are made based on the current practices of nanofiltration membranes in water industry for a stand-alone membrane filtration system in removing various types of contaminants from polluted waters.