• Title/Summary/Keyword: Stance Phase

Search Result 248, Processing Time 0.028 seconds

A numerical method for improving the reliability of knee translation measurement in skin marker-based motion analysis

  • Wang, Hongsheng;Zheng, Nigel
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.269-277
    • /
    • 2014
  • In skin-marker based motion analysis, knee translation measurement is highly dependent on a pre-selected reference point (functional center) on each segment determined by the location of anatomical landmarks. However, the placement of skin markers on palpable anatomical landmarks (i.e., femoral epicondyles) has limited reproducibility. Thus, it produces large variances in knee translation measurement among different subjects, as well as across studies. In order improve the repeatability of knee translation measurement, in this study an optimization method was introduced, by which the femoral functional center was numerically determined. At that point the knee anteroposterior translation during the stance phase of walking was minimized. This new method was tested on 30 healthy subjects during walking in gait lab with motion capture system. Using this new method, the impact of skin marker position (at anatomical landmarks) on the knee translation measurement has been minimized. In addition, the ranges of anteroposterior knee translations during stance phase were significantly (p<0.001) smaller than those measured by conventional method which relies on a pre-selected functional center ($11.1{\pm}3.5mm$ vs. $19.9{\pm}5.5mm$). The results of anteroposterior translation using this new method were very close to a previously reported knee translation (12.4 mm) from dual fluoroscopic imaging technique. Moreover, this new method increased the reproducibility of knee translation measurement by 50%.

Motion Analysis of Tresidmill Walking with Various Slopes at a Normal Speed (Treadmill에서의 경사로 정상보행에 관한 동작분석)

  • Kim, Youngho;Yang, Giltae;Mun, Museong
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Kinematic and kinetic studies were performed to investigate the walking characteristics on a treadmill with various slopes at the same speed of 1.25m/sec. Six different slopes of the treadmill were selected . -4%(-$2.3^{\circ}$), 0%($0^{\circ}$), 5%($2.9^{\circ}$), 10%($5.7^{\circ}$), 15%($8.6^{\circ}$), and 20%($11.3^{\circ}$). With increased slopes of the treadmill, both hip and knee flexion angles significantly increased at initial contact, and the maximum hip flexion during swing phase and the maximum knee flexion during stance phase also significantly increased Ankle dorsiflexion angle at initial contact and the maximum dorsiflexion increased with increased slopes. However, the maximum plantarflexion in early swing was slightly reduced with increased slopes. Hip extension in late stance and the maximum knee flexion in early swing was not changed sigilificantly with increased slopes. As for the vertical ground reaction force, compared to the yond level walking, both the first and the second peak forces increased, but the mid-support force decreased.

  • PDF

Effects of Flexible and Semirigid Lumbosacral Orthosis on Lower-Limb Joint Angles during Gait in Patients with Chronic Low Back Pain: A Cross-Sectional Study

  • Im, Sang-Cheol;Kim, Kyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • PURPOSE: Lumbosacral orthosis (LSO) is often used to help manage low back pain because it is economical and effective. This study examined the effects of flexible and semirigid LSOs on the lower-limb joint angles in walking in patients with chronic low back pain. METHODS: The effects of the lumbosacral orthosis during gait on the sagittal, frontal, horizontal planes and the change in lower limb angle were examined in fourteen chronic low back pain patients who walked without wearing a LSO, wearing a flexible LSO, and wearing a semirigid LSO in random order for three-dimensional motion analysis. RESULTS: The flexion of the hip and knee joints decreased more significantly during walking with an LSO than without one. The genu valgum angles were reduced in the stance phase more during walking with an LSO than without one. The external rotation of the knee joints in the stance phase increased more during walking with an LSO than without one. CONCLUSION: The angles of the lower-limb joints of patients with chronic low back pain are affected by walking with an LSO, and the effects increased as the LSO stiffened.

Immediate Effects of Ankle Eversion Taping on Balance and Gait Function in Patients with Chronic Stroke: A Randomized Controlled Trial

  • Hye-In Bae;Myeong-Ho Lee;Myoung-Kwon Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • PURPOSE: This study examined the immediate effects of applying ankle eversion taping using kinesiology tape in chronic stroke patients-design: a randomized cross-over trial. METHODS: Seventeen stroke patients underwent three interventions in random order. The subjects were initially assigned randomly to an ankle eversion taping, placebo taping, or no taping for each intervention. Ankle eversion taping was used for mechanical correction and was involved in ankle dorsiflexion and eversion. The tape was stretched by 30-40%. Placebo tapping was applied in the same form as eversion tapping but was not stretched. The balance ability was assessed using the Y-balance test. The gait ability was assessed by maximum foot pressure and time of stance phase, and gait speed was assessed using a 10 m walk test (10MWT). All measurements were performed immediately after the intervention. RESULTS: The results showed that the dynamic balance and stance phase time in chronic stroke patients was improved after ankle eversion taping. The ankle eversion taping conditions increased significantly (p < .05) compared to the placebo and no taping conditions. CONCLUSION: The application of ankle eversion taping that uses kinesiology tape instantly increased the gait ability of chronic stroke patients. On the other hand, more research will be needed to identify the long-term effects of ankle eversion taping.

The Effect of Toe Spreader on Characteristics of Dynamic Foot Pressure in Children With Spastic Cerebral Palsy (Toe Spreader가 경직성 뇌성마비 아동의 동적 족압 특성에 미치는 영향)

  • Shin, Hwa-Kyung;Tae, Ki-Sik
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • Purpose: The purpose of this study was to determine whether there are any differences, with and without a toe spreader (TS), in dynamic foot pressure distribution in children with spastic diplegic cerebral palsy. Methods: Dynamic foot pressure recording using the RSscan system were obtained during walking in 12 participants (male=7, female=5) with and without TS. Mean force was measured for four different plantar regions; great toe, forefoot, midfoot, hindfoot. Displacement of center of pressure (COP), velocity of COP displacement and stance time were also measured during gait. Results: TS walking exhibited statistically significant decrease of mean force under great toe and forefoot (p<0.05), compared with a barefoot walking. Also, TS walking exhibited statistically significant increase of antero-posterior displacement of COP (p>0.05). Conclusion: These findings indicate the potential clinical utility of toe spreader to correct dynamic foot pressure during stance phase in children with spastic diplegic cerebral palsy.

Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation (고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정)

  • Shin, Dong-Hwan;An, Jin-Ung;Moon, Jeon-Il
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

Robotic-assisted gait training applied with guidance force for balance and gait performance in persons with subacute hemiparetic stroke

  • Son, Dong-Wook;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.106-112
    • /
    • 2017
  • Objective: Robot assisted gait training is implemented as part of therapy for the recovery of gait patterns in recent clinical fields, and the scope of implications are continuously increasing. However clear therapy protocols of robot assisted gait training are insufficent. The purpose of this study was to investigate the effects of robot-assisted gait training applied with guidance force on balance and gait performance in persons with hemiparetic stroke. Design: Two group pre-test post-test design. Methods: Nineteen persons were diagnosed with hemiparesis following stroke participated in this study. The participants were randomly assigned to the unilateral guidance group or bilateral guidance group to conduct robot-assisted gait training. All participants underwent robot-assisted gait training for twelve sessions (30 min/d, 3 d/wk for 4 weeks). They were assessed with gait parameters (gait velocity, cadence, step length, stance phase, and swing phase) using Optogait. This study also measured the dynamic gait index (DGI), the Berg balance scale (BBS) score, and timed up and go (TUG). Results: After training, BBS scores were was significantly increased in the bilateral training group than in the unilateral guidance group (p<0.05). Spatiotemporal parameters were significantly changed in the bilateral training group (gait speed, swing phase ratio, and stance phase ratio) compared to the unilateral training group (p<0.05). Conclusions: The results of this study suggest that robot-assisted gait training show feasibility in facilitating improvements in balance and gait performance for subacute hemiparetic stroke patients.

Development of Knee Ankle Foot Orthosis for Gait Rehabilitation Training using Plantaflexion and Knee Extension Torque (족저굴곡과 무릎 신전 토크를 이용한 보행 재활 훈련용 장하지 보조기 개발)

  • Kim, Kyung;Kim, Jae-Jun;Heo, Min;Jeong, Gu-Young;Ko, Myoung-Hwan;Kwon, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.948-956
    • /
    • 2010
  • The purpose of this study was to test the effectiveness of a prototype KAFO (Knee-Ankle-Foot Orthosis) powered by two artificial pneumatic muscles during walking. We had previously built powered AFO (Ankle-Foot Orthosis) and KO (Knee Orthosis) and used it effectively in studies on assistance of plantaflexion and knee extension motion. Extending the previous study to a KAFO presented additional challenges related to the assistance of gait motion for rehabilitation training. Five healthy males were performed gait motion on treadmill wearing KAFO equipped with artificial pneumatic muscles to power ankle plantaflexion and knee extension. Subjects walked on treadmill at 1.5 km/h under four conditions without extensive practice: 1) without wearing KAFO, 2) wearing KAFO with artificial muscles turned off, 3) wearing KAFO powered only in plantaflexion under feedforward control, and 4) wearing KAFO powered both in plantaflexion and knee extension under feedforward control. We collected surface electromyography, foot pressure and kinematics of ankle and knee joint. The experimental result showed that a muscular strength of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be lower due to pneumatic assistance and foot pressure of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be greater due to power assistance. In the result of motion analysis, the ankle angle of powered KAFO in terminal stance phase was found a peak value toward plantaflexion and there were difference of maximum knee flexion range among condition 2, 3 and 4 in mid-swing phase. The current orthosis design provided plantaflexion torque of ankle jonit in terminal stance phase and knee extension torque of knee joint in mid-swing phase.

Comparisons between Skilled and Less-Skilled Players' Balance in Hakdariseogi (태권도 품새 우수·비 우수선수 간 학다리서기의 균형성 비교)

  • Ryu, Ji-Seon;Yoo, Si-Hyun;Park, Sang-Kyoon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2012
  • The purpose of this study was to investigate the balance differences between skilled players and less-skilled players during Hakdariseogi motion of Keumgang Poomsae in Taekwondo. To achieve the study goal, total of 10 Taekwondo athletes; 5 skilled players(S, body mass: $67.0{\pm}5.7$ kg, height: $174.0{\pm}4.8$ cm, age: $20.0{\pm}2.0$ yrs) and 5 less-skilled players(LS, body mass: $73.0{\pm}4.9$ kg, height: $176.4{\pm}6.1$ cm, age: $20.8{\pm}1.3$ yrs) participated in this study. A three-dimensional motion analysis with 8 infrared cameras and one force plate whose sampling frequency as 30 Hz and 300 Hz, respectively, were performed. Participants' motion were divided into three phases which were preparation phase(P1), performing phase(P2) and maintaining phase(P3). The range and velocities of COP, the range and RMS of ground reaction torque and displacement between COM and center of BOS of each phase were computed. In this study, at P1 and P3 which were double and single stance, respectively, the range and M-L velocities of COP revealed significantly higher in LS compared with those of S(p<.05). At P2 which was single stance, LS indicated significantly higher in range of COP and ground reaction torque, and M-L velocities of COP than those of S(p<.05). The significantly shorter displacement between COM and center of BOS, however, was found in LS compared with that of S(p<.05). The results from our study indicated that S revealed more stable performance and a better posture control ability during performing Hakdariseogi motion.

Gait Analysis According to the changes of the carrying type and weight of bag (가방의 휴대 형태와 무게 변화에 따른 보행 분석)

  • Kim, Chan-Kyu;Lee, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.199-205
    • /
    • 2013
  • The purpose of this study was to analyze the changes in gait according to four style of bag's carryied method and three different bag's weights. Twenty healthy adults participated in four conditions. The first condition, they wearing a bag on one side shoulder and walked. The second condition, they carried a bag sling across on shoulder and walked. The third condition, they carried a bag on a back using both shoulders and walked. The fourth condition, they hold a bag in their right hand and walked. During all four conditions participants wore a SmartStep insole in their right shoe and had a pressure control device strapped to their right ankle. Each participant walked 10 meters carrying a 2.5 kg, 5 kg and 7.5 kg bag under all four conditions. There were significantly differents in stance phase rate; swing phase rate and walking speed according to bag weight of 2.5 kg, 5 kg, 7.5 kg.