• 제목/요약/키워드: Stance Phase

검색결과 248건 처리시간 0.028초

입각기.유각기 동시제어식 대퇴의지의 개발 (Development of a Stance and Swing Phase Control Transfemoral Prosthesis)

  • 김신기;김경훈;문무성;이순걸;백영남
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.685-694
    • /
    • 2001
  • In this study, a transfemoral prosthesis system of which both stance phase and swing phase are controllable has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics of the knee damper which absorbs the impact energy generated at the heel contact were investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase were also studied for its mechanical characteristics. The prosthesis was subject to the clinical tests, and the gait characteristics obtained were very close to those of normal subjects. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

입각기와 유각기 제어 대퇴의지의 개발 (Development of a Stance & Swing Phase Control Transfemoral Prosthesis)

  • 김신기;김종권;홍정화;김경훈;문무성;이순걸;백영남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.504-509
    • /
    • 2000
  • In this study, a transfemoral prosthesis system of which stance phase and swing phase are controlled during walking has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics and behaviour of the knee damper which absorbs the impact energy generated at the heel contact was investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase was also studied for its mechanical characteristics. The prosthesis was subject to the clinical test ant the gait characteristics obtained were very close to those of normal. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

  • PDF

파킨슨씨 병 환자와 정상인의 입각기시간과 상비율의 비교 (Comparison of the Total Stance Time And the Phase Ratio in Parkinson's Disease Patients And Normal Subjects)

  • 김지원;엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.351-356
    • /
    • 2006
  • The purpose of this study is to investigate the gait characteristics in Parkinson's disease patients. Specifically, the total stance time and the ratio of each stance phase (heel strike, mid-stance, propulsion) are analyzed from the foot-pressure measurement system which requires low cost and small space compared to the conventional gait analysis system. The gait characteristics were analyzed in 23 Parkinson's disease patients (before and after L-dopa medication), 34 elderly (sixties) normal subjects and 21 young (twenties) normal subjects. Bradykinesia global score (self-developed score of slowness of body movement) of patients before medication was determined to see the relationship between the score and the gait characteristics. The total stance time was greater in the erde. of patients, elderly, youngs (p<0.05). The phase ratio of heel strike and propulsion was smaller and that of mid-stance was greater in the order of patients, elderly, youngs (p<0.05). However, there was no significant difference in the above gait characteristics of patients before and after medication. There was a tendency, though statistically non-significant, that the total stance time is longer and the propulsion phase ratio is shorter in patients with greater Bradikinesia global scale, and this tendency was relieved after medication.

족압패턴에 의한 보행보조기를 위한 입각기 감지기법 (Recognition of Stance Phase for Walking Assistive Devices by Foot Pressure Patterns)

  • 이상룡;허근섭;강오현;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.223-228
    • /
    • 2011
  • In this paper, we proposed a technique to recognize three states in stance phase of gait cycle. Walking assistive devices are used to help the elderly people walk or to monitor walking behavior of the disabled persons. For the effective assistance, they adopt an intelligent sensor system to understand user's current state in walking. There are three states in stance phase; Loading Response, Midstance, and Terminal Stance. We developed a foot pressure sensor using 24 FSRs (Force Sensing/Sensitive Resistors). The foot pressure patterns were integrated through the interpolation of FSR cell array. The pressure patterns were processed to get the trajectories of COM (Center of Mass). Using the trajectories of COM of foot pressure, we can recognize the three states of stance phase. The experimental results show the effective recognition of stance phase and the possibility of usage on the walking assistive device for better control and/or foot pressure monitoring.

노인의 장애물 보행 시 장애물 높이에 의한 압력중심 이동시간의 차이 (Time Difference of the COP Displacement according Obstacle Height during Obstacle Crossing in Older Adults)

  • 박설;김경;박지원
    • The Journal of Korean Physical Therapy
    • /
    • 제23권2호
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: This study examined the difference in the center of pressure (COP) displacement time in older adults according to the obstacle height during stance at each sub.phase when crossing obstacles. Methods: Fifteen older adults were enrolled in this study (${\geq}65$ years of age). The F-scan was used to measure the COP displacement time when crossing a 0, 10 and 40cm obstacle, and the stance phase was divided into 4 sub-phases according to the foot contact pattern. Results: During the stance phase, the COP displacement time increased with increasing obstacle height. During the mid-stance, terminal stance and pre-swing except for the loading response, there were significant differences in the COP displacement time according to the obstacle height. Conclusion: This study suggests that older adults show differences in the COP displacement time according to the stance sub-phase while crossing obstacles, and they use different mechanisms according the sub-phases to maintain balance during obstacle crossing.

골반안정화 운동프로그램이 엉치엉덩관절 통증을 동반한 만성요통환자의 통증과 엉덩관절에 미치는 영향 (The Effect of Pelvic Stability Exercise Program on Pain and Hip Joint of Patients with Chronic Low Back Pain involving Sacroiliac Joint Pain)

  • 강정일;최현
    • 디지털융복합연구
    • /
    • 제11권4호
    • /
    • pp.331-338
    • /
    • 2013
  • 본 연구는 엉치엉덩관절 통증을 동반한 만성 요통환자 52명을 대상으로 6주 간 골반운동프로그램 및 전통적 물리치료를 병행한 실험군 27명과 전통적 물리치료만을 중재한 대조군 25명을 무작위 임상 표본 추출 하였다. 두 군 모두 통증의 정도를 알아보는 오스웨스트리-요통장애지수검사와 보행 시 엉덩관절의 각도분석을 한 후, 집단별 실험 전과 실험 후의 오스웨스트리-요통장애지수검사와 보행 시 엉덩관절의 각도분석을 비교하여 골반안정화 운동프로그램이 엉치엉덩관절 통증을 동반한 만성요통환자의 통증과 엉덩관절에 미치는 영향을 알아보고자 하였다. 요통의 변화는 집단 내와 집단 간에서 모두 유의하게 감소되었음을 알 수 있었고, 엉덩관절 각도비교에서는 실험군내 좌측 엉덩관절에서 중간디딤기, 말기디딤기, 유각전기, 초기흔들기와 우측 엉덩관절의 중간디딤기, 말기디딤기, 유각전기, 초기흔들기에서 차이가 있었다. 대조군 내 좌측 엉덩관절에서는 중간디딤기, 말기디딤기, 초기흔들기와 우측 엉덩관절의 체중전달기, 중간디딤기, 말기흔들기, 유각전기에서 유의한 차이가 있었다. 따라서 골반안정화 운동프로그램이 통증을 포함한 요통기능장애수준에 효과적이고 보행 시 입각기와 유각기 동안 엉덩관절의 굽힘과 폄이 리듬 있게 이동하여 보행이 대칭적으로 자연스럽게 이동되는데 도움이 되는 것으로 나타났다.

몸통 안정화 근육과 보행요소의 상관관계 (Correlation between Trunk Stabilization Muscle Activation and Gait Parameters)

  • 채정병;정주현
    • PNF and Movement
    • /
    • 제17권1호
    • /
    • pp.111-118
    • /
    • 2019
  • Purpose: This study aimed to investigate the correlation between trunk stabilization muscle activation and the parameters of gait analysis in healthy individuals. Methods: Thirty healthy adults (15 male, 15 female) with no history of lower back pain (LBP) or current musculoskeletal and neurological injuries were studied. Trunk stabilization muscle activation (e.g., external oblique, internal oblique, transverse abdominis, erector spinae) were assessed using surface electromyography. To analyze gait, we measured temporal parameters (e.g., gait velocity, single support phase, double support phase, swing phase, and stance phase) and a spatial parameter (e.g., H-H base of support). Results: A statistically significant correlation was found between the internal oblique, transverse abdominis, and erector spinae muscle activity and gait velocity, single support phase, double support phase, swing phase, and stance phase. No statistically significant correlation was found between the external oblique muscle activity and the gait velocity, single support phase, double support phase, swing phase, and stance phase. No statistically significant correlation was found between the external oblique, internal oblique, transverse abdominis, and erector spinae muscle activity and the spatial parameter. Conclusion: This study demonstrated that a relationship exists between trunk stabilization muscle activation and temporal parameter (i.e., gait velocity, single support phase, double support phase, swing phase, and stance phase) during gait analysis. Therefore, the trunk's stabilizer muscles play an important role in the gait of healthy individuals.

Immediate effects of single-leg stance exercise on dynamic balance, weight bearing and gait cycle in stroke patients

  • Jung, Ji-Hye;Ko, Si-Eun;Lee, Seung-Won
    • Physical Therapy Rehabilitation Science
    • /
    • 제3권1호
    • /
    • pp.49-54
    • /
    • 2014
  • Objective: This study aimed to identify how various applications of weight bearing on the affected side of hemiplegia patients affect the ability of balance keeping of the affected leg and the gait parameters. Design: Cross-sectional study. Methods: Eighteen patients with hemiplegia participated in this study. There were twelve males and six females. This study investigated the effects of the single-leg stance exercise on dynamic balance, weight bearing, and gait ability compared with four conditions. Dynamic balance and weight bearing were measured using the step test (ST) of the affected side in stroke patients. In addition, gait parameters were measured using the optogait system for analysis of the spatial and temporal parameters of walking in stroke patients. Results: This study investigated the effect of the single leg stance exercise on the paralysis side. The ST showed significant findings for all conditions (p<0.05). Therefore, knee extension and flexion exercise on the affected side single-leg stance (condition 4) significantly improved dynamic balance and weight bearing on the affected side (p<0.05). In the condition of moving the knee joint in a single-leg stance was discovered that the stance phase time significantly increased more than in the condition of supporting the maximal voluntary weight on the affected side (p<0.05). Conclusions: Single-leg stance on the paralysis side with knee flexion and extension increased symmetry in weight bearing during stance phase time. This study suggests that single-leg stance exercises augments improved gait function through sufficient weight bearing in the stance phase of the affected side.

Correlation between Gait Speed and Velocity of Center of Pressure Progression during Stance Phase in the Older Adults with Cognitive Decline: A Pilot Study

  • Seon, Hee-Chang;Lee, Han-Suk;Ko, Man-Soo;Park, Sun-Wook
    • 대한물리의학회지
    • /
    • 제15권4호
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE: The progression of the center of pressure (COP) velocity of the stance phase may have important roles for predicting gait speed in older adults with cognitive decline. This study was conducted to identify the correlation between gait speed and the velocity of COP progression during the stance phase in older adults with cognitive decline. METHODS: Forty adults aged 65 years or older (twenty participants without cognitive decline, 20 participants with cognitive decline) were recruited. The COP progression velocity was measured using an F-scan pressure-sensitive insole system. The stance phase was divided into four sub-stages. (loading response, mid-stance, terminal stance, and pre-swing). Gait speed, double support phase, and cadence were also measured. Correlations and multiple regression analyses were performed. RESULTS: Gait speed was associated with the COP progression velocity in midstance (r = .719, p < .05), cadence (r = .719, p < .05) and the COP progression velocity in loading response velocity (r = .515, p < .05) in older adults with cognitive decline. However, no correlation was found in older adults without cognitive decline. In multiple regression analysis using gait speed as a dependent variable, the COP progression velocity in midstance and cadence were significant predictors of gait speed, with the COP progression velocity being the most significant predictor. CONCLUSION: The COP progression velocity is an important factor for predicting gait speed in older adults with cognitive decline, suggesting that the cognitive function influences gait speed and the velocity of COP progression.

보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석 (A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction)

  • 오태영
    • The Journal of Korean Physical Therapy
    • /
    • 제25권2호
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.