• 제목/요약/키워드: Stamping die

검색결과 154건 처리시간 0.024초

1.5GPa급 자동차용 고강도강의 레이저 용접부 특성평가 (Evaluation of Laser Welding Characteristics of 1.5GPa Grade Ultra High Strength Steel for Automotive Application)

  • 김용;박기영;이경돈;정준교;김동화
    • 한국레이저가공학회지
    • /
    • 제13권4호
    • /
    • pp.1-6
    • /
    • 2010
  • Recently the use of ultra high strength steels (UHSS) in structural and safety component is rapidly increasing in the automotive industry. For example, 1.5GPa grade hot stamping with die-quenching of boron steel 22MnB5 could apply crash-resistant parts such as bumpers and pillars. The development of laser welding process of hot stamping steels, fundamental bead-on-plate welding and lap joint welding test were carried out using 3kW Nd:YAG laser. Local hardening & HAZ softening occurred in hot stamping steel as a result of metallurgical change caused by the welding heat input in the Nd:YAG laser welding process. The size of soft zones in the hot stamping steel was related to the welding heat input, being smaller at high speeds which generated a smaller heat input. Also in the case of lap joint design structure, same welded characteristics were shown. The HAZ softening degree was controlled to ensure the joint strength.

  • PDF

유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석 (Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method)

  • 윤승채;김도형
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

TWB 보론강의 기계적 특성 및 성형성 (Mechanical Properties and Formability of TWB Boron Steel)

  • 남기우;황석환;김대용;이문용;이상문
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1221-1226
    • /
    • 2012
  • 핫 스탬핑은 오스테나이트 변태 온도 이상에서 프레스 성형 후 급속히 냉각되는 고강도 부품을 제조하는 성형 방법이다. 매우 적은 양의 보론 성분을 가지고 있는 보론강은 핫 스탬핑에 사용되는 재료 중의 하나이다. 본 연구의 목적은 열처리 조건에 따르는 기계적 성질과 에릭슨 커핑 시험에 의하여 성형성을 조사하는 것이다. 다양한 온도에서 다이��칭은 대기 시간을 달리하여 실시하였다. 1173 K-0s에서 ��칭 후 TWB는 1203 MPa의 인장 강도를 얻었다. 이것은 모재 인장강도(1,522 MPA)의 79 %이다. 금형 온도(298, 523, 673 K)에 따른 보론강 TWB의 성형성은 차이가 크지 않았다. 그러나 성형 속도가 증가함에 따라 성형성이 감소하는 것을 확인할 수 있었다.

TRIP1180 판재의 냉간 스탬핑공정에서 금형강의 경도 특성에 따른 내마모성 평가 (Quantitative Evaluation of Wear Resistance of Stamping Tool with Respect to Hardness of Tool Materials in Cold Stamping of TRIP1180 Steel Sheets)

  • 방준호;배기현;송정한;김홍기;이명규
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.129-135
    • /
    • 2022
  • The purpose of this study was to quantitatively evaluate the influence of hardness of tool materials on wear resistance in the sheet metal forming process. Punches used in the wear test were made of STD-11 and K340 tool material, and the tempering temperature was set to 530℃ and 500℃, respectively, to control the hardness of the tool materials. The punches mimic the shape of stamping tool of automotive body component to reflect its plastic deformation, and are designed to concentrate wear on the curvature region of punches. Progressive die and coil sheet were used to save time, cost, and raw sheet materials. By quantitatively measuring the wear depth of the punches, the wear behavior and mechanism of the punches were investigated, and characteristics of hardness and wear resistance according to tool materials and tempering temperatures were evaluated. Testing results indicate that the punch made of K340 tool steel with higher hardness had better wear resistance than that of STD-11 tool steel, and the hardness and wear resistance of tool steel were significantly impacted by the tempering temperature.

차체판넬 프레스 성형공정의 평면변형해석 (Plane-Strain Analysis of the Stamping Process of Auto-Body Panel)

  • 전기찬;이항수;유동진;이정우;김충환
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1853-1860
    • /
    • 1992
  • 본 연구에서는 평면변형을 가정할 수 있는 부품을 대상으로 하여 성형에너지 최소화 기법을 사용하여 계산속도가 빠르고, 설계된 금형의 CAD 데이터로부터 직접 변 형해석이 가능하며 금형 설계자들이 용이하게 사용할 수 있는 2차원적인 해석을 연구 하였다.

REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구 (A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process)

  • 고형훈;안현길;이찬호;안병일;문원섭;정동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1980-1983
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of ide. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

Pin-on-Flat Surface Test를 이용한 초고장력강판 스탬핑 금형의 정량적 스크래치 수명평가 (Quantitative Evaluation of Scratch Related Tool Life for Stamping of UHSS Using Pin-on-Flat Surface Test)

  • 최홍석;김성귀;김병민;고대철
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.86-92
    • /
    • 2013
  • When stamping ultra-high-strength steel (UHSS), the phenomenon of galling, which corresponds to a transfer of material from the sheet to the tool surface, occurs because of the high contact pressure between tool and workpiece. Galling leads to increased friction, unstable interface conditions, scratches on the sheet and the tool surfaces and, eventually, premature tool surface failures. Therefore, a simple and accurate evaluation method for tool scratching is necessary for the selection of tool material and coating, as well as for a better optimization of process conditions such as blank holder force and die radius. In this study, the pin-on-disc (PODT) and pin-on-flat surface (POFST) tests are conducted to quantitatively evaluate scratch-related tool life for stamping of UHSS. The variation of the friction coefficient is used as an indicator of scratch resulted from galling. The U-channel ironing test (UCIT) is performed in order to validate the results of the friction tests. This study shows that the POFST test provides a good quantitative estimation of tool life based on the occurrence of scratch.

MART1470 판재 냉간 프레스 성형용 금형 코팅층의 마모량 비교 (Comparison of Wear Amount of Surface Coating Layers on Dies for Cold-Stamped Products with MART1470)

  • 손민규;김세호
    • 소성∙가공
    • /
    • 제31권1호
    • /
    • pp.11-16
    • /
    • 2022
  • In this paper, wear characteristics of PVD coatings were compared on the die surface for cold stamping of MART1470 steel sheet with the finite element analysis and the pin-on-disc wear test. Three types of PVD coatings (CrN, TiAlCrN, and MoS2TiCr(W)N) were considered for the tool surface made of STD11 material. The stamping process of an auto-body part was analyzed with the finite element method. Ranges of process variables for the wear test such as contact pressure, relative speed, and sliding distance were predicted from analysis results. In order to quantitatively analyze wear characteristics of each coating, the amount of wear was measured and compared according to process variables with the pin-on-disc wear test. The influence of each process variable was investigated and the wear characteristics of the three coating layers were quantitatively compared. It was confirmed that the wear characteristics of MoS2TiCr(W)N coating were better than those of CrN and TiAlCrN. It was noted that the proposed prediction approach could predict and respond to the wear phenomenon occurring in the stamping process.

자유곡면 가공공정의 정형화된 모델링 (Structured Modeling of Sculptured Surface Machining Process)

  • 김대현;김보현;편영식;최병규
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.192-200
    • /
    • 1998
  • Even though most die-maker are using CAD/CAM systems rout NC tool-path generation, “front-end”CAD/CAM technologies have not been fully adapted to sculptured surface machining(SSM) nor are sufficiently utilized in die shops. This gap between die-making industry and CAD/CAM community persists mainly because of the lack of a SSM-process model through which the two groups communicate with each other. Proposed in this paper is a model of SSM-processes which is built around the concepts of machining stages, unit machining operations, and each machining stage is decomposed into a sequence of unit machining operations(UMOs). Identified in the paper are five machining stages and 17 types of UMO. Based on the framework of the proposed model, an example of inner-panel stamping-die machining processes is described in detail.

  • PDF

1.2GPa급 초고강도강판의 공정조건에 따른 스프링백 특성에 관한 유한요소해석 연구 (A Study on the Finite Element Analysis of springback characteristics according to stamping process conditions of UHSS with UTS of 1.2GPa)

  • 장현민;최계광
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.34-39
    • /
    • 2018
  • The biggest topics in the automobile industry are light weightening and fuel efficiency improvement. There's a lot of research going on. It is focused on light weight materials. Light weight material is seen as the best way to reduce fuel consumption and to solve the problem of environmental pollution and resource depletion. For the light weight materials, new materials such as aluminum, magnesium, and carbon-hardening materials can be found. Research on the joining techniques of dual materials, improvement of material properties by improving the method of manufacture of existing materials, and studies on ultra-high strength steel sheets are expected to take up the most weight in lightweight materials. As the strength of the ultra-high strength steel sheets increases during forming, it is difficult to obtain dimensional precision due to the increase in elastic restoring force compared to mild or high strength steel sheets. Spring back is known to be affected by a number of factors due to poor plastic molding, and can be divided into the effects of the material spraying and the process. The study on the plasticitic variables were studied as plasticitic factors that can be controlled by a part company. Tensile testing of ultra-high strength materials was conducted to derive properties for plasticitic analysis and to analyze spring back with two factors controlling the height of the bead and blank holding force by adding tensile force and controlling the flow rate.