• Title/Summary/Keyword: Stamping Tool Design

Search Result 51, Processing Time 0.024 seconds

자동차 프레스 금형 자동 설계 지원 시스템 (Automatic Design Supporting System for Automobile Stamping Tool)

  • 정효상;이성수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.194-202
    • /
    • 2002
  • Die design of bonnet drawing is composed of upper die, lower die and blank holder. It has been performed by checked and re-design method, which cause economic and financial loss. Nowadays, CAD/CAM system is excellent, but application is low. Therefore, in specific item, drawing die of bonnet outer draw by 3-D lay-out. In this study purpose, Bonnet drawing die is designed rapidly, correctly. It's method that shape modify to resemble. This purpose lead to 3-D Lay-Out. It is to react the standard die. In rule relation, input data change all of the shape.

유한요소해석을 이용한 자동차용 박판부재의 감성품질 개선 (Improvement of Feeling Quality of a Stamped Member for an Autobody with the Finite Element Analysis)

  • 김세호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.252-255
    • /
    • 2004
  • Design modification of the stamping die for the upper member of a front end module carrier is carried out in order to improve the feeling qualify of the final product. The small inferiority induced by wrinkling near the wall of the FEM upper member has been inspected after the draw-forming process. The finite element simulation shows that the excess metal is developed by the irregular contact of the blank the tool and it remains after the final stroke. This paper proposes two guidelines for the modification: one is to add the draw-bead; and the other is to modify the tool shape such as the forming shape at the wall. Simulation results show that the proposed guidelines both guarantee the improved feeling quality.

  • PDF

초고강도강판 프레스성형용 금형의 CrN 코팅층 마모수명 예측 (Wear Life Prediction of CrN Coating Layer on the Press Tool for Stamping the Ultra High Strength Steel Sheet)

  • 이정흠;배상범;윤국태;허재영;김세호;박춘달
    • 소성∙가공
    • /
    • 제26권3호
    • /
    • pp.137-143
    • /
    • 2017
  • In this study, a wear test method was proposed to predict the wear life of the CrN layer coated on the surface of the press tools for manufacturing the auto-parts with ultra high strength steel (UHSS) with a tensile strength of 1.5 GPa. The pin-on-disc type wear test was carried out to confirm the feasibility and the reproducibility of the wear amount according to the test conditions such as the normal force, the sliding velocity, and the sliding speed. The test conditions were obtained from the finite element stamping analysis and the wear simulation. With the wear amount from the wear test, a prediction model of the wear depth in the CrN coating layer was proposed according to the test conditions with the design of experiments such as Taguchi method and the response surface method. The derived prediction model was then compared to the result of the Archard wear model, fully describing that the proposed model can effectively predict the wear life of the press tools for the auto-parts with UHSS.

튜브하이드로포밍 공정에서의 성형한계 해석 (Analysis of Forming Limit in Tube Hydroforming)

  • 김영삼
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.134-140
    • /
    • 2000
  • Tube hydroforming is a relatively new technology compared to conventional stamping. thus there is little knowledge base that can be utilized for process and die design. To remedy this situation considerable research is now being conducted by many researchers on significant aspects of tube hydroforming technology including material selection pre-form design hydroforking process and tool design. in the tube hydroforming process we frequently experence many failure modes like wrinkling. buckling folding back and fracture under the improper forming conditions. In this paper forming limit for failure occurrence such as fracture and wrinkling is examined theoretically and the result is compared with Back's experimental result.

  • PDF

다구치 실험 계획법을 이용한 6세대 LCD Glass의 최적설계 (Optimal Design of the 6th Generation LCD Glass Using the Taguchi Method)

  • 조웅;송춘삼;김종형
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.104-109
    • /
    • 2008
  • Nowadays, the researches for improving LCD manufacturing process and reducing cost are getting accelerated and additionally new types of process are widely developed. In this situation, APEM(Anti Photo Exposure Method) which does not need photo-lithography is realized as one of possible alternative of LCD process. APEM makes LCD pattern by stamping and it can reduce the process cost and process time because of its simplicity. But optical alignment between pattern glass and target glass is very critical fact to realize the precise patterns. So, the analysis of deflection of large size of glass is carried out and design of experiment method is applied for optimal design of jig.

내구성을 고려한 후륜현가 장치의 하이드로포밍 공정 설계 (Durability Based Design for Hydroforming process of Rear Suspension)

  • 김헌영;오인석;고정민;이동재;조우강
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.269-272
    • /
    • 2006
  • The hydroforming processing is a relatively new technology in comparison with conventional stamping process. The hydroforming processing makes torsion beam in rear suspension of automobile. The durability of torsion beam is very important characteristic that operate in an automobile. In order to optimize the hydroforming process and satisfy the durability, the hydroforming simulation which could control an axial compression and high internal pressure with computer simulation has to be operated. This paper is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam of suspension system. The result from finite element analysis shows that the forming and the durability are optimized. If there is effect of First pressure in hydroforming processing that gap is in the die tool, the prototype of tube is not satisfied on the durability test.

  • PDF

자유곡면 가공공정의 정형화된 모델링 (Structured Modeling of Sculptured Surface Machining Process)

  • 김대현;김보현;편영식;최병규
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.192-200
    • /
    • 1998
  • Even though most die-maker are using CAD/CAM systems rout NC tool-path generation, “front-end”CAD/CAM technologies have not been fully adapted to sculptured surface machining(SSM) nor are sufficiently utilized in die shops. This gap between die-making industry and CAD/CAM community persists mainly because of the lack of a SSM-process model through which the two groups communicate with each other. Proposed in this paper is a model of SSM-processes which is built around the concepts of machining stages, unit machining operations, and each machining stage is decomposed into a sequence of unit machining operations(UMOs). Identified in the paper are five machining stages and 17 types of UMO. Based on the framework of the proposed model, an example of inner-panel stamping-die machining processes is described in detail.

  • PDF

건설기계 Cabin Sunroof 형상비드 배치에 따른 스프링백 개선 (Spring-back Improvement According to the Shape Bead Arrangement of Cabin Sunroof in Construction Equipment)

  • 배기현
    • 소성∙가공
    • /
    • 제30권2호
    • /
    • pp.69-73
    • /
    • 2021
  • This paper addresses the product shape modification for spring-back reduction in the sheet metal forming process of the cabin sunroof which is applied to the construction equipment. Initially, the anisotropic material properties are measured in order to calculate the degree of spring-back by the numerical simulation of the sheet metal forming process. To reduce the spring-back of the stamped part, several design modifications are suggested according to the geometrical bead arrangement on the planar region. The degrees of spring-back are confirmed for various product designs with different use of the geometrical bead. Finally, the spring-back improvement was validated by manufacturing the tryout product with the modified die set for the optimized product shape.

고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석 (Springback Analysis of the Front Side Member with Advanced High Strength Steel)

  • 송정한;김세호;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF

진동신호 기계학습을 통한 프레스 금형 상태 인지 (State recognition of fine blanking stamping dies through vibration signal machine learning)

  • 홍석관;정의철;이성희;김옥래;김종덕
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.