• Title/Summary/Keyword: Stamping Process

Search Result 283, Processing Time 0.022 seconds

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process (대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석)

  • 정동원;김귀식;양동열
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method (유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석)

  • Yoon, S.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

Elastic-plastic Finite Element Analysis of Drawbead Forming for Evaluation of Equivalent Boundary Conditions in Sheet Metal Forming - Part I : Evaluation (박판 성형공정에서의 등가 경계조건 계산을 위한 드로우비드 성형의 탄소성 유한요소 해석 - PartI: 등가 경계조건 계산)

  • Park, J.S.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.503-512
    • /
    • 2002
  • The drawbead is used to control material flow into the die during the binder wrap process and the stamping process in the sheet metal forming process. Since the dimension of drawbead is relatively small in comparison with the typical dimensions, it is difficult to include drawbeads in finite element analysis of the sheet metal forming process. It is because the mesh system has to be fine enough to describe the drawbead and the computation time is drastically increased. In this paper, simulation of drawbead forming has been carried out to obtain the equivalent boundary conditions in the binder wrap process and the stamping process. In order to investigate the effect of various die geometries, parameter studies are performed with the variation of parameters such as the blank length, the drawbead depth, the drawbead radius, the inclination of die and the friction coefficient.

Non-isothermal Stamping Analysis of Automotive Seat Cushion Panel Using Mg Alloy Sheet (마그네슘을 적용한 자동차 시트 쿠션 패널 비등온 성형해석)

  • Seo, Oh Suk;Lee, Chung An;Park, Chang Su;Kim, Hwa Jin;Lee, Kyoung Teak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.605-611
    • /
    • 2016
  • Mg alloy sheet exhibits significant differences in tensile and compressive yield stress depending on the temperature, as well as variations in its hardening behavior. Such unusual behavior makes it difficult to simulate the forming process of Mg alloy sheets. Results of analysis tend to deviate significantly from the experimental data because commercial software do not completely implement the unusual hardening behavior, yield asymmetry and temperature dependent changes in the Mg alloy's material properties. In the previous study, an in-plane tension-compression cyclic tester was developed to predict the cyclic behavior of Mg alloy sheets at an elevated temperature of up to $250^{\circ}C$. A new constitutive equation was suggested to analyze the unusual behavior, and was implemented in the commercial software in the form of user subroutine. In this paper, a stamping process of Mg seat cushion panel for automotive parts was simulated using the experimental data and user subroutine. Based on the analysis, an optimal temperature condition was determined and a stamping die shape at each step was suggested in the non-isothermal stamping of Mg alloy sheets.

Development of PEMFC Metallic Bipolar Plate for Automotive Driving (자동차 구동용 PEMFC 금속계 분리판 개발)

  • Lee, Jong-Chan;Kim, Ki-Jung;Yang, Yoo-Chang;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF

The Die Development of REF SILL OTR-R/L Auto-Body Panel by using Forming Analysis (성형해석을 통한 REF SILL OTR-R/L 차체판넬 금형개발)

  • Jung, D.W.;Lee, C.H.;Moon, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.81-85
    • /
    • 2006
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF

An Efficient Analysis of Wrinkling in the Door Inner Stamping Process by Global Analysis and Subsequent Local Analysis (전체해석과 국부해석을 통한 Door Inner 스탬핑 공정에서 발생하는 주름의 효과적인 해석)

  • 김종봉;김태정;양동열;유동진
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.653-662
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products together with tearing, springback and other geometric and surface defects. The initiation and growth of wrinkles are influenced by many factors such as stress ratios, mechanical properties of the sheet material, geometry of the workpiece, contact condition, etc. It is difficult to analyze the wrinkling initiation and growth considering all the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide scatter of data even for small deviations of factors. The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. In the present study, therefore, a global-local analysis technique is introduced for the computational efficiency. Through the analysis of wrinkling in the door inner stamping process, the efficiency of the global-local analysis technique is investigated.

  • PDF

Effect of Die Cooling Time on Component Mechanical Properties in a Front Pillar Hot Stamping Process (곡선형 냉각채널 금형을 사용한 프론트 필라 핫스탬핑 공정에서 금형냉각시간이 기계적 특성에 미치는 영향)

  • Lee, Jaejin;Kang, Dakyung;Suh, Changhee;Lim, Yonghee;Lee, Kyunghoon;Han, Soosik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • Researchers have recently begun to study hot stamping processes to shorten the mold cooling time and improve productivity. These publications explain that the mold cooling time can be reduced by using a curved cooling channel, where the mold surface is processed to a uniform depth, instead of a straight cooling channel that uses the conventional gun drilling machine. This study investigates the characteristics of the front pillar of an automobile after using a mold with a curved cooling channel. To analyze the change in properties, we used a 1.6 mm boron steel blank and heated the prototype at $930^{\circ}C$ for 5 minutes. Next, we formed the prototype with a load of about 500 tons while varying the mold cooling time between 1 and 10 seconds. We subjected each prototype specimen to a tensile strength test, a hardness test, and a tissue surface observation.

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.