• Title/Summary/Keyword: Stamping Process

Search Result 283, Processing Time 0.034 seconds

Development of Stamping Process Optimization System through the Integration of Blank Design and Nesting (블랭크 설계와 배치의 일체화를 통한 스탬핑 공정 최적화 시스템의 개발)

  • 심현보;박종규
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.615-622
    • /
    • 2003
  • In the automobile industry, the design of optimal blank shape becomes a significant part of the stamping. It provides many evident advantages, sush as enhancement of formability, reduction of material cost and product development period. However, the nesting process, required for the optimal usage of materials in the blanking becomes more complicated as the blank shape becomes complicated, like most optimal blank shape. In this study, stamping process optimization system for the optimal usage of material has been developed through the integration of optimal blank design and optimal nesting. For optimal blank design, a radius vector method, the modified version of the initial nodal velocity method, the past work of the present author, have been proposed. Both the optimal blank design and optimal nesting programs have been developed under the GUI environment for the convenience of engineers. The efficiency of the optimization system has been verified with some chosen problems.

Study on the Deformation of a Sheet Metal structure due to Stamping Residual Stresses (성형잔류응역에 의한 박판구조물의 변형에 대한 연구)

  • 김권희;권희상
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.48-71
    • /
    • 1996
  • Rectangular frames of thin sheet metals are press formed during their manufacture. The multistage process includes blanking, stamping, bending, and trimming. After stamping the sheet is subjected to warping and twisting due to residual stresses. The twist is not desirable since it affects the subsequent assembly processes. Study has been performed to predict the twist.

  • PDF

A study on the weldability of 1500MPa grade hot stamping steels in the GMAW (1500MPa급 Hot stamping 강재의 GMAW 용접성에 관한 연구)

  • Hwang, J.;Kim, J.S.;Kim, C.H.;Lee, B.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.64-64
    • /
    • 2009
  • The use of ultra high strength steels (UTSS) is a natural result with increasing the demands for the lightweight materials and developing an innovative steel technology. Recently it has been used a 1500MPa grade hot stamping steel as automobile bodies, reinforcement parts, and seat frame parts in the automotive industry. It is a quenchenable steel manufactured by hot stamping process. It is well known that UTSS welding has softening in the heat affected zone(HAZ). Because welding is a sort of process applying heat, it should change the heat treated features and degrade the strength. This study was performed to investigate the influence of the heat input on the softening of the HAZ in the GMAW process. Each experiment was compared with that in the conditions having a different current and voltage at a same heat input. In order to analysis characteristics of the HAZ, optical microscope was used to observe microstructure and vickers hardness tests were carried out across the welds. Applying low heat input means a fast cooling rate. It leads to high hardness in the HAZ. It is found that characteristics of the HAZ are determined by microstructure obtained by different cooling rate.

  • PDF

A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy (자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE 기법 개발)

  • Choi, Han-Ho;Ku, Tae-Wan;Hwang, Sang-Moon;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.164-171
    • /
    • 1999
  • An optimum blank design technology is required for near-net of net-shape cold forming using sheets. Originally, the backward tracing scheme has been developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform of initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges, one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach or decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF

A Study on Laser Weldability of Al-Si Coated 22MnB5 Steel for TWB Hot Stamping (Al-Si 도금된 22MnB5강의 핫스탬핑 TWB 적용을 위한 레이저용접성 고찰)

  • Kim, Yong;Park, Ki-Young;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.30-36
    • /
    • 2013
  • Recently the use of ultra high strength steels(UHSS) in structural and safety component is rapidly increasing in the automotive industry. Furthermore, it commonly use in tailor welded blank laser welding process before hot stamping to reduce lightweight vehicle. However TWB process is to be a problem about welded strength after hot stamping because it's welded before heat treatment. Therefore, in this study, laser welds of TWB after heat treatment were analyzed for changes in the characteristics, especially the impact on the oxidation and decarburization in order to prevent pre-coated Al-Si layer welds on the properties for intensive investigation. As a result, the degradation of the TWB weldments changes in the heat treatment conditions alone, without any pre-treatment of the coating layer has confirmed that there is a limitation on the improvement. Furthermore Al-Si elements are overall distributed on the weldment and it specially concentrated along the fusion line. Hardness value of Al-Si segregation area is less than 350Hv and tensile strength showed just 78~83% compared with substrate. Accordingly, we proved that both side Al-Si coating should be removed in order to ensure the strength of the substrate.

A Study On the Combined One Body Stamping Using F.E.A. (유한요소해석을 이용한 일체복합성형성에 대한 연구)

  • Kwon S. Y.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.171-175
    • /
    • 2005
  • Automotive parts manufacturers are doing their best to strengthen the competitiveness. They are developing a large variety of new manufacturing technologies to reduce the manufacturing cost. Combined One Body Stamping(C.O.B.S) is one of the remarkable technologies to reduce production cost. C.O.B.S makes possible to form several parts together in a process using only one die set while conventional stamping demands the same number of die sets to the number of parts. But the deformation mechanism in C.O.B.S is more complicated because the interactions between blanks. So the interaction effects should be considered in the stage of initial blank shape design. In the study, a blank design method to consider the interactions between blanks was proposed and verified through the simulations and experiments. A commercial incremental FE code, LS-Dyna, was used to simulate the C.O.B.S Process. And a reverse one step FE code, Hyper Form, was used to predict initial blank shape. The boundary conditions of the reverse one step FE analysis were determined by the proposed method.

  • PDF

Stamping of Side Panel Using the Laser Welded Tailored Blank (레이저 용접 테일러드 블랭크를 이용한 사이드 패널 성형)

  • 권재욱;명노훈;백승엽;인정제;이경돈
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • In this study, side panels were developed using the laser-welded tailored blank (T.B.) of both the same thickness and different thickness. At first, the formability of the same thickness T.B. was investigated to compare with one of the non-welded panel with respect to weldline movement and strain distribution in blank during the stamping process. Based on these results, we determined the weld line positions and the die step for T.B. forming of the blanks composed of different thickness combination. Then we made some stamping tryouts with selected types of blanks to investigate the formability of T.B. of the different thickness. During the tryouts, wrinkles were found in the a-pillar lower region which is under the deformation mode of the shrink flange. In the b-pillar region, fractures were also found. These defects have been reduced and corrected by controlling the blank design, the die faces and process parameters.

  • PDF