• Title/Summary/Keyword: Stamping Process

Search Result 283, Processing Time 0.022 seconds

Symmetric-viewing liquid crystal display with alternating alignment layers in an inverse-twisted-nematic configuration

  • Na, Jun-Hee;Li, Hongmei;Park, Seung-Chul;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.191-194
    • /
    • 2011
  • A symmetric-viewing inverse-twisted-nematic (ITN) liquid crystal display (LCD) with alternating alignment layers was developed using a stamping-assisted rubbing (SAR) technique. A patterned layer of a fluorinated acrylate polymer was transferred onto the first rubbed vertical-alignment layer prepared on a substrate by stamping. The fluorinated acrylate polymer provided a protective layer covering the first rubbed alignment layer during the second rubbing process, which promoted the vertical alignment of the LC molecules. The LC cell in the ITN geometry with two orthogonally rubbed alignment layers showed symmetric-viewing characteristics with fourfold symmetry. The SAR technique was shown to be a mask-free alignment method of producing multidomains for symmetric-viewing LCDs.

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A Finite Element Modeling and Analyses of Laser Tailor-Welded Automotive Body (레이저 용접 차체의 유한 요소 모델링과 성형해석)

  • 김헌영;최광용;김관회;조원석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.31-36
    • /
    • 1997
  • Various methods of finite element modeling for welded part are examined and the stamping simulation of automotive body is presented by using the explicit finite element code PAM-STAMPTM. The process of stamping simulation is suggested step by step, and then the gravity, binder wrap, forming, trimming and springback of front door inner are analyzed. It shows good agreements with real product in the aspects of deformed shape and failure area. The door inner with laser-tailor welded blank is simulated, in which deformed shape, movement of welde line and formability are predicted.

  • PDF

Simulation and Field Try-out of Auto Panel Stamping Processes (자동차 패널 전 스탬핑 공정의 시뮬레이션과 현장 트라이 아웃)

  • Chung K. W.;Lee J. M.;Keum Y. T.;Lee S. Y.;Ahn I. H.;Hwang E. J.;Park J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.164-167
    • /
    • 2004
  • The draw, trim, flange, and cam forming processes of automotive fender panel are simulated, focused on the springbacks. Simulation results are compared with field try-out. In order to compensate the differences between simulation and try-out, the draw bead shapes in the simulation are modified and the accuracy of the simulation is improved by comparing blank draw-in amounts. The spring-backs after formings are also found in the simulation. Finally, the simulation procedures for analyzing the springbacks in all stamping processes are established.

  • PDF

Stamping Analyses of Laser Welded Door Inner and Die Design (레이저 용접 도어 인너의 성형해석과 금형설계)

  • 김헌영;신용승;김관희;조원석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.65-71
    • /
    • 1997
  • Computer simulations and test trials are carried out to get the optimal conditions about the stamping die design of the tailor laser welded automotive door inner. Firstly, the stamping process including gravity deflection, bead calibration, binder wrap, forming and spring back, are analyzed by the computer simulation. The results of simulation shows good correspondance with those of test trial under the same conditions. The variables of parametric study which will be investigated in the simulation and test trials, are determined form the results of the first run. The formability under the various conditions is evaluated, which are the initial postion of blank, blank holding force, corner radius and the shape of drawbead. Finally, well controled sound product without fracture, wrinkling and excessive weldline movement is obtained.

  • PDF

Experimental Study on Mixed-Model Production of Stator and Rotor using Motor Core Laminated Stamping Die Technology for Attaching and Detaching Cam (Cam 착탈 방식의 모터코어 적층금형 기술을 적용한 Stator와 Rotor의 다종 혼류 생산에 대한 연구)

  • Park, D.H.;Hwang, P.J.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2017
  • Mixed-model production technology is a method of producing multiple products with one production process and production line in order to reduce wasted manpower and adjust to market trends. In other words, mixed-model production is a flexible production system that changes production volume by model according to market demand. This study has developed a progressive laminated stamping die technology to enable flexible production of a motor core consisting of attaching and detaching the Cam on the back of the punch so that two kinds of stator and two kinds of rotor could be produced in one progressive die.

Development of Light weight Aluminum Subframe using Hybrid forming process (복합성형공법 적용 경량 알루미늄 서브프레임 개발)

  • Kwon, T.W.;Park, B.C.;Jang, G.W.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.361-363
    • /
    • 2007
  • The light weight aluminum subframe for automobile chassis part was developed using hybrid process, i.e. extruforming, press stamping and MIG welding. To achieve a 30 % weight reduction compared with conventional steel subframe keeping satisfactory performance, the design of cross-section of extruforming part was introduced, then forming simulation was performed and the final design was determined. In addition, we tried to estibilish optimun aluminum welding conditions for good penetration depth and few pore defact, finally the prototype of aluminum subframe was assembled using MIG welding method.

  • PDF

A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel (보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구)

  • Jeon, Yong-Jun;Choi, Hyun-Seok;Lee, Hwan-Ju;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

Study on Hot Stamping of the Rotating Module Upper Plate for an Autonomous Vehicle Seat (자율주행 자동차용 전동회전시트 상부회전판의 핫스탬핑 성형에 관한 연구)

  • Yook, Hyung-sub;Pyun, Jong-Kweon;Suh, Chang-Hee;Oh, Sang-Gyun;Kwon, Tae-Ha;Kim, Byung-Ki;Park, Dong-Kyou
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.44-49
    • /
    • 2021
  • Seats in autonomous vehicles must be able to rotate to fully utilize the interior space. Generally, ultra-high strength steel is used for the rotation module because it should have high strength and high rigidity. In addition, the rotating parts are difficult to form because they have complex shapes. In this study, the upper plate of the rotating module, whose complex shape makes it difficult to form, was formed by applying the hot stamping method. The drawing method and the form-drawing method, which are generally used to form components of complex shapes, were compared. We showed that the form-drawing method increased the degree of freedom of the material flow to improve the formability, thus enabling the forming of the plate. In addition, the die and blank shapes were found to be important factors in determining the success of the hot stamping. The validity of the analysis results was confirmed through forming analysis and experiments.