• Title/Summary/Keyword: Stamping

Search Result 508, Processing Time 0.031 seconds

A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process (동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용)

  • 정동원;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

Development of Metallic Bipolar Plate for Automotive PEMFC (자동차 구동용 PEMFC 금속계 분리판 개발)

  • Jeon, Yoo-Taek;Chung, Kyeong-Woo;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.321-325
    • /
    • 2005
  • Bipolar plate is the main part with MEA in automotive PEMFC. It must have a good electrical conductivity and excellent corrosion resistance, be cost effective. Therefore, stainless steels have been studied by many researchers because of its corrosion resistance and cost benefits. But their properties are not sufficient for the application to bipolar plate for automotive PEMFC. In this work, we have performed stamping using various commercial stainless steels to select candidate material for biploar plate and to derive design parameters for stamping simulation. The results showed that a small curvature at the corner of flow field is more favorable due to easier a plastic deformation. Stamping process was simulated by changing surface condition, and the size and angle of channel. The optimum shape and spring back phenomena were evaluated. Surface coating was applied to increase the corrosion resistance and electrical conductivity of stainless steel. The electrical interfacial resistance was 10 to $15m{\Omega}cm^2$ under clamping force of 150psi. But corrosion resistance of coating on the stainless steel was not good due to the unstableness of microstructure.

  • PDF

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

A Study of Tool Planning for Forming Analysis in REF SILL OTR-R/L Auto-Body Panel Stamping Process (REF SILL OTR-R/L 차체판넬 스템핑 공정에서 성형해석을 통한 공법개발에 관한 연구)

  • Ko H.H.;Ahn H.G.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1980-1983
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. The sheet metal process with above characteristic is common used in industrial field, but in order to analysis irregular field problems the reliable and economical analysis method is demanded. Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. Among Finite element method, The static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planing alloy to reduce law price as well as high precision from Design Optimization of ide. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.

  • PDF