• Title/Summary/Keyword: Stall Angle

Search Result 102, Processing Time 0.021 seconds

Design Exploration of High-Lift Airfoil Using Kriging Model and Data Mining Technique

  • Kanazaki, Masahiro;Yamamoto, Kazuomi;Tanaka, Kentaro;Jeong, Shin-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.28-36
    • /
    • 2007
  • A multi-objective design exploration for a three-element airfoil consisted of a slat, a main wing, and a flap was carried out. The lift curve improvement is important to design high-lift system, thus design has to be performed with considered multi-angle. The objective functions considered here are to maximize the lift coefficient at landing and near stall conditions simultaneously. Kriging surrogate model which was constructed based on several sample designs is introduced. The solution space was explored based on the maximization of Expected Improvement (EI) value corresponding to objective functions on the Krigingmodels. The improvement of the model and the exploration of the optimum can be advanced at the same time by maximizing EI value. In this study, a total of 90 sample points are evaluated using the Reynolds averaged Navier-Stokes simulation(RANS) for the construction of the Kriging model. In order to obtain the information of the design space, two data mining techniques are applied to design result. One is functional Analysis of Variance(ANOVA) which can show quantitative information and the other is Self-Organizing Map(SOM) which can show qualitative information.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV (스마트무인기 로터 공탄성 및 훨플러터 안정성 해석)

  • 김도형;이주영;김유신;이명규;김승호
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.75-82
    • /
    • 2006
  • Tiltrotor aircraft can fly about twice faster and several times further than conventional helicopters. These aircraft provide advantages preventing compressibility of advancing side and stall of retreating side of blades because they take forward flight with tilting rotor systems. However, they have limit on forward flight speed because of the aeroelastic instability known as whirl flutter. First, the parametric study on the aeroelastic stability of the isolated rotor system has been performed in this paper. And the effects of pitch-link stiffness, gimbal spring constant, and precone angle on the whirl flutter stability of Smart-UAV have been investigated through CAMRAD II analysis.

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

Neural Network Controller of A Grid-Connected Wind Energy Conversion System for Maximum Power Extraction (계통연계 풍력발전시스템의 최대출력제어를 위한 신경회로망 제어기에 관한 연구)

  • Ro, Kyoung-Soo;Choo, Yeon-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • This paper presents a neural network controller of a grid-connected wind energy conversion system for extracting maximum power from wind and a power controller to transfer the maximum power extracted into a utility grid. It discusses the modeling and simulation of the wind energy conversion system with the controllers, which consists of an induction generator, a transformer, a link of a rectifier, and an inverter. The paper describes tile drive train model, induction generator model and grid-interface model for dynamics analysis. Maximum power extraction is achieved by controlling the pitch angle of the rotor blades by a neural network controller. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation. The simulation results performed on MATLAB show the variation of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers is verified.

Separation control using multi-array/multi-location synthetic jet (Multi-array/multi-location synthetic jet을 이용한 박리 제어)

  • 김상훈;김종암
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.8-15
    • /
    • 2006
  • Separation control has been performed using the multi-array/multi-location synthetic jet on NACA23012 at high angle of attack. The flow control using single synthetic jet shows that stall characteristics can be substantially improved with delayed separation point. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

Flow Separation Control Effects of Blowing Jet on an Airfoil (블로잉 제트에 의한 에어포일에서의 유동박리 제어효과)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1059-1066
    • /
    • 2007
  • An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×105 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in Cn was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°-3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.

Real-time System Identification of Aircraft in Upset Condition Using Adaptive-order Zonotopic Kalman Filter (적응 차수 조노토픽 칼만 필터를 활용한 비정상 비행상태 항공기의 실시간 시스템 식별)

  • Gim, Seongmin;Harno, Hendra G.;Saderla, Subrahmanyam;Kim, Yoonsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • It is essential to prevent LoC(Loss-of-Control) or upset situations caused by stall, icing or sensor malfunction in aircraft, because it may lead to the crash of the aircraft. With this regard, it is crucial to correctly identify the dynamic characteristics of aircraft in such upset conditions. In this paper, we present a SID(System IDentification) method utilizing the moving-window based least-square and the adaptive-order ZKF(Zonotopic Kalman Filter), which is more effective than the existing Kalman-filter based SID for the aircraft in upset condition at a high angle of attack with temporary sensor malfunction. The proposed method is then tested on real flight data and compared with the existing one.

Analysis of the Dynamic Characteristics on Aerodynamic Loads of Wind Turbine Blade with New Airfoil KA2 (신규 익형 KA2가 적용된 풍력 블레이드의 공력 하중에 대한 동특성 해석)

  • Kang, Sang-Kyun;Lee, Ji-Hyun;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.63-70
    • /
    • 2015
  • This paper proposes a novel airfoil named "KA2" for the blade of the wind turbine systems. Dynamic loads characteristics are analyzed and compared using aerodynamic data of ten airfoils including the proposed airfoil. The blade is divided into the sixteen elements in the longitudinal direction of the blade for applying the Blade Element Method Theory (BEMT) method, and in each element, torque, thrust, and pitching moment are calculated using turbulent time varying wind speed and aerodynamic data of each wing. Additionally, each force and torque is accumulated in the whole region of the blade for the estimation of representative values. The magnitude of such forces is comparatively analyzed for different airfoils. The angle of attack is constant below the rated wind speed due to the fact that the tip speed ratio is kept at the constant value, and it increases in the region of over rated wind speed as the tip speed ratio decreasing with constant rated rpm and increasing wind speed. Such increase in the angle of attack causes the changes of the force acting on the airfoil with different characteristics of lift and drag in the stall region of each different airfoil. Even though the mean wind speed is in the rated speed in a given time, because of the turbulence, it has either the over rated or under rated speed most of the time. Furthermore, the dynamic properties of each force are analyzed in this rated wind speed in order to objectively understand the dynamic properties of the blades which are designed based on the different airfoils. These dynamic properties are also compared by the standard deviation of time varying characteristics. Moreover, the output characteristics of the wind turbine are investigated with different airfoils and wind speeds. Based on these investigations, it was revealed that the proposed airfoil (KA2) is well applicable to the blade with passive pitch control system.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.