• Title/Summary/Keyword: Stair Walking

Search Result 70, Processing Time 0.02 seconds

Design and Control of a Wearable Robot for Stair-Climbing Assistance (계단 보행 근력 보조를 위한 착용형 로봇의 설계 및 제어)

  • Kim, Myeong-Ju;Kang, Byeong-Hyeon;Kim, Ok-Sik;Seo, Ki-Won;Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • This paper describes the development of a thigh wearable robot for power assistance during stair climbing. In the wearable robot developed in this study, high-power BLDC motors and high-capacity harmonic reduction gears are used to effectively assist the thigh muscle during stair climbing. In particular, normal ground and stair are distinguished accurately by using wireless smart shoes, and the stair climbing assistance is performed by activating the actuators at an appropriate time. Impedance of the hip joint was effectively reduced by performing friction compensation of the gears, and a wearing adjustment mechanism was designed to fit the robot to the thigh by conveniently modifying the width and tilting angle of the robot using set collars. Consequently, the performance of the developed thigh wearable robot was verified through stair climbing experiments with EMG measurement.

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System (동적 하네스 체중지지율에 따른 일상생활 동작 시 인체영향평가)

  • Song, Seong Mi;Yu, Chang Ho;Kim, Kyung;Kim, Jae Jun;Song, Won Kyung;Hong, Chul Un;Kwon, Tae Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.

Kinematic Analysis of Lower Extremities during Staris and Ramp Walking with Hemiplegic Patients (편마비 환자의 계단과 경사로 보행 동안 하지의 운동학적 분석)

  • Cheon, Dong-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.297-302
    • /
    • 2013
  • Purpose: This study was conducted in order to investigate the kinematic gait parameter of lower extremities with different gait conditions (level walking, stair, ramp) in hemiplegic patients. Methods: Ten hemiplegic patients participated in this study and kinematic data were measured using a 3D motion analysis system (LUKOtronic AS202, Lutz-kovacs-Electronics, Innsbruk, Austria). Statistical analysis was performed using one-way repeated measure of ANOVA in order to determine the difference of lower extremity angle at each gait phase with different gait conditions. Results: Affected degree of ankle joint in the heel strike phase showed significant difference between level walking and climbing stairs, and toe off phase showed significant difference between level walking and climbing stairs, ramps, and climbing stairs. Affected degree of knee joint showed no significant difference in all attempts. Affected degree of hip joint in the toe off phase showed significant difference between level walking, ramps and stairs, and climbing ramps. Swing phase showed significant difference between sides for level walking and stairs, climbing ramps. Affected ankle joint of heel strike and toe off, and affected hip joint of toe off and the maximum angle of swing phase in the angle was increased. Unaffected side of the ankle joint, knee joint, and hip joint showed a significant increase in walking phase. Conclusion: These findings indicate that compared with level walking, different results were obtained for joint angle of lower extremity when climbing stairs and ramps. In hemiplegia patient's climbing ramps, stairs, more movement was observed not only for the non-affected side but also the ankle joint of the affected side and hip joint. According to these findings of hemiplegic patients when climbing stairs or ramps, more joint motion was observed not only on the unaffected side but also on the affected side compared with flat walking.

The effects of functional electrical stimulation applied to the gluteus medius and tibialis anterior on stair climbing ability in persons with stroke

  • Jung, Jewon;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.134-138
    • /
    • 2018
  • Objective: The aim of this research was to investigate the effects of functional electrical stimulation (FES) applied to the gluteus medius (Gm) and tibialis anterior (TA) during stair climbing in persons with stroke compared to FES applied to the TA only during stair climbing, and during stair climbing without FES in persons with stroke. Design: Cross-sectional study. Methods: Twenty subjects with stroke participated in this study. Subjects were included if: 1) they were diagnosed as stroke at least 6 months before; 2) had Mini Mental State Examination- Korean score of 24 or higher; 3) were able to climb a flight of 10 stairs independently (with or without walking aid). The patients walked 10 stairs 3 times with FES applied to the Gm and TA, only TA, or no FES. There was a 1-minute rest period between each bout. The assessments were made using the Timed Up & Down Test and the Wii Balance Board. Results: Stair climbing with FES applied to the Gm and TA was significantly faster than stair climbing with FES applied to the TA only and without FES (p<0.05). Stair climbing with FES applied to the Gm and TA exhibited significantly greater sway velocity than stair climbing without FES (p<0.05). However, maximal sway distances were not significantly different between groups. Conclusions: Stair climbing with FES applied to the Gm and TA can be an important component of a rehabilitation program for improving stair climbing ability in persons with stroke.

Pelvic, Hip, and Knee Kinematics of Stair Climbing in People with Genu Varum

  • Chae, Yun Won;Park, Seol;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.1
    • /
    • pp.14-22
    • /
    • 2018
  • Purpose: This study examined the effects of the lower limb alignment on the pelvis, hip, and knee kinematics in people with genu varum during stair walking. Methods: Forty subjects were enrolled in this study. People who had intercondylar distance ${\geq}4cm$ were classified in the genu varum group, and people who had intercondylar distance <4cm and intermalleolar distance <4cm were placed in the control group. 3D motion analysis was used to collect the pelvis, hip, and knee kinematic data while subjects were walking stairs with three steps. Results: During stair ascent, the genu varum group had decreased pelvic lateral tilt and hip adduction at the early stance phase and decreased pelvic lateral tilt at the swing phase compared to the control group. At the same time, they had decreased minimal hip adduction ROM at the early stance and decreased maximum pelvic lateral tilt ROM and minimum hip rotation ROM at the swing phase. During stair descent, the genu varum group had decreased pelvic lateral tilt at the early stance and decreased pelvic lateral tilt and pelvic rotation at the swing phase. In addition, they had decreased pelvic frontal ROM during single limb support and increased knee sagittal ROM during the whole gait cycle. Conclusion: This study suggests that a genu varum deformity could affect the pelvis, hip and knee kinematics. In addition, the biomechanical risk factors that could result in the articular impairments by the excessive loads from lower limb malalignment were identified.

The Effect of Walking Aid on Chronic Hemiplegic Gait (만성 뇌졸중 환자의 보행에 보행보조기가 미치는 영향)

  • Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.13 no.3
    • /
    • pp.67-74
    • /
    • 2006
  • The purpose of this study was to investigate the effects of walking aid on hemiplegic gait of chronic stroke patients. Twelve stroke patients participated in this study. Physiological cost index (PCI), gait speed, and climbing stairs with and without walking aid were measured and analyzed. The results showed that walking with walking aid significantly improved gait speed and reduced physiological cost index and time needed to climb stair (height 7 cm) in comparison with a walking without walking aid. In conclusion, walking aid may improve the speed and efficiency of hemiplegic gait in chronic stroke patients.

  • PDF

A Study on the Inverse Kinematics for a Biped Robot (2족 보행 로봇의 역기구학에 관한 연구)

  • 성영휘
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1026-1032
    • /
    • 2003
  • A biped walking robot which is developed as a platform for researching walking algorithm is briefly introduced. The developed walking robot has 6 degrees of freedom per one leg. The origins of the last three axis do not intersect at a point, so the kinematic analysis is cubmersome with the conventional method. In the former version of the robot, Jacobian-based inverse kinematics method is used. However, the Jacobian-based inverse kinematics method has drawbacks for the application in which knee is fully extended such as stair-case walking. The reason far that is the Jacobian becomes ill-conditioned near the singular points and the method is not able to give adequate solutions. So, a method for giving a closed-form inverse kinematics solution is proposed. The proposed method is based on careful consideration of the kinematic structure of the biped walking robot.

Analysis of Muscle Activity with Lower Extremity during Stairs and Ramp Ascending of Hemiplegic Patients (편마비 환자의 계단과 경사로 오르기 동안 하지의 근 활성도 분석)

  • Park, Seung-Kyu;Cheon, Dong-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.4
    • /
    • pp.247-252
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the change of muscle activities during level walking, stairs and ramp climbing in hemiplegic patients. Methods: Eight hemiplegic patients were recruited and agreed to participate in this study. Muscle activity was measured by MP100 system (BIOPAC System Inc., Santa Barbara, CA, USA). Statistical analysis was used as a one-way repeated measure of ANOVA to know the difference according to the gait conditions (level walking, stairs and ramp ascending). Results: In the swing phase, muscle activity of rectus femoris muscle, with the side lower extremities affected, were generally significantly different in the stair and ramp ascending. In addition, biceps femoris muscle with unaffected side lower extremity was generally significantly different in the ramp ascending. In the swing phase, muscle activity of tibialis anterior muscle with unaffected side lower extremities was generally showed a significant difference in the ramp ascending. In the stance phase, climbing stairs and ramps showed an increase in the muscle activities. Further, climbing the stairs increased muscle activities of the gastrocnemius muscle. Conclusion: These findings indicate that compared with the level walking climbing stairs, ramps and muscle activities of lower extremity during each showed different results. It can be seen that in accordance with the terms of gait are different muscles group recruitment.

Altitude and Heading Correction of 3D Pedestrian Inertial Navigation

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.189-196
    • /
    • 2021
  • In this paper, we propose techniques to correct the altitude error and heading error of 3D Pedestrian Inertial Navigation (PIN). When a PIN is used to estimate the location of a pedestrian only with an Inetrial Measurement Unit (IMU) without infrastructure, there is a problem in that the location error gradually increases due to the limitation of the observability of the filter. To solve this problem without additional sensors, we propose two techniques in this paper. First, stair walking is recognized in consideration of the altitude difference that may occur during one step. If it is recognized as stair walking, only Zero-velocity UPdaTe (ZUPT) is performed, and if it is recognized as level walking, ZUPT + Altitude Damping (AD) is performed together to correct the altitude error. Second, the straight-line movement direction is calculated through the difference of the estimated position, and the heading error is corrected by matching this information with the link information of the digital map. By applying these techniques, it is verified through real tests that accurate three-dimensional location information of pedestrians can be estimated without infrastructure.

An Investigation of the Effect of the Height of Wteps on the Joint Moment of Lower Extremities of the Elderly While Walking Downstairs (노인의 계단 내려가기 동작 시 계단 높이와 하지 관절 모멘트와의 관계 연구)

  • Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.31-38
    • /
    • 2006
  • The purpose of this study was to investigate the effect of changing the steps height on the joint moment of lower extremity in stair-descent activity of elderly persons. Data were collected by 3-D cinematography and force platform. 9 male elderly subjects in the 60s and 70s participated in this study. All subjects performed a stair-descent in four different heights of stairs (10, 14, 18, 22cm) having 5 step staircase. The results were as follows. 1. For the step height of 22cm the maximum. plantarflexion moment was the smallest and the largest for the step height of 14cm. 2. There was not a statistical difference shown for the extension moment of the knee joint for the different height of steps. 3. There was not a statistical difference shown for the flexion moment of the hip joint for the varying height of steps but on average for the 18cm step this increased rapidly. 4. The smallest maximum. value for inversion moment was revealed for the step height of 10cm and this increased significantly for the step height of 22cm. 5. The smallest maximum. value for abduction moment of the hip joint was revealed for the step height of 10cm and this increased significantly for the step height of 22cm. 6. There was no significant difference shown for the maximum. abduction moment for the hip joint. The main conclusion is that there is a huge difference in the moment of the lower extremities for the elderly while walking down a stairs with a step height above 18 cm and that this moment increased or decreased rapidly under a condition of step height being 22cm. With the results from this research and related research of elderly walking upstairs it can be shown that the step height has a large role in the safety for the elderly.