• Title/Summary/Keyword: Stainless-steel

Search Result 3,644, Processing Time 0.026 seconds

Effect of Phase Composition on High Temperature Plasticity for Duplex Stainless Steel (Duplex Stainless Steel의 상변화에 따른 고온 소성변형 거동)

  • Choi, Jae-Ho;Choe, Byung-Hak;Kim, Seung-Eon
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • The high temperature mechanical behaviour of duplex stainless steels was examined. The relation-ship between the dynamic recrystallization substructures and the flow behaviour was analyzed in detail, and the flow behaviour was analyzed in detail, and the mechanisms of dynamic recrystallization were also discussed. The formation of disloca-tion cells and subgrain structures is of great significance to the understanding of high temperature deformation.

  • PDF

Electrochemical Characteristics of Welded Stainless Steels Containing Ti (Ti 함유된 스테인리스강 용접부의 전기화학적 특성)

  • Choe Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.227-233
    • /
    • 2005
  • Electrochemical characteristics of welded stainless steels containing Ti have been studied by using the electrochemical techniques in 0.5 M $H_2SO_4$+0.01 M KSCN solutions at $25^{\circ}C$. Stainless steels with 12 mm thick-ness containing $0.2{\~}0.9 wt\%$ Ti were fabricated with vacuum melting and following rolling process. The stainless steels were solutionized for 1hr at $1050^{\circ}C$ and welded by MIG method. Samples were individually prepared with welded zone, heat affected zone, and matrix for intergranular corrosion and pitting test. Optical microscope, XRD and SEM are used for analysing microstructure, surface and corrosion morphology of the stainless steels. The welded zone of the stainless steel with lower Ti content have shown dendrite structure mixed with $\gamma$ and $\delta$ phase. The Cr-carbides were precipitated at twin and grain boundary in heat affected zone of the steel and also the matrix had the typical solutionized structure. The result of electrochemical measurements showed that the corrosion potential of welded stainless steel were Increased with higher Ti content. On the other hand, reactivation($I_r$), passivation and active current($I_a$) density were decreased with higher Ti content. In the case of lower Ti content, the corrosion attack of welded stainless steel was remarkably occurred along intergranular boundary and ${\gamma}/{\delta}$ phase boundary in heat affected zone.

Development of High Performance Stainless Steel Powders

  • Schade, Christopher;Schaberl, John;Narasimhan, Kalathur S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.169-170
    • /
    • 2006
  • Advanced melting technology is now being employed in the manufacture of stainless steel powders. The new process currently includes electric arc furnace (EAF) technology in concert with Argon Oxygen Decarburization (AOD), High Performance Atomizing (HPA) and hydrogen annealing. The new high performance-processing route has allowed the more consistent production of existing products, and has allowed enhanced properties, such as improved green strength and green density. This paper will review these processing changes along with the potential new products that are being developed utilizing this technology. These include high strength stainless steels such as duplex and dual phase as well as stainless steel powders used in high temperature applications such as diesel filters and fuel cells.

  • PDF

Microstructure and High Temperature Deformation Behavior of Heat Resistant Stainless Steel for a Retort (열환원반응관용 내열강의 미세조직과 고온변형거동)

  • Choi, G.S.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • High temperature deformation behavior of a heat-resistant duplex stainless steel, used as a retort in the Pidgeon process for Mg production, was investigated in this study. 25Cr-8Ni based duplex stainless steels were cast into rectangular ingots, with dimensions of $350mm{\times}350mm{\times}100mm$. Nitrogen and yttrium were added at 0.3wt.% each to enhance the heat-resistance of the steel. Phase equilibrium was calculated using the thermodynamic software FactSage$^{(R)}$ and the database of FSStel. For comparison, cast 310S steel, a widely used heat-resistant austenitic stainless steel, was also examined in this study. Dilatometry was conducted on the as-cast ingots for the temperature range from RT to $1200^{\circ}C$ and the thermal expansion coefficients were evaluated. The nitrogen addition was found to have an effect on the thermal expansion behavior for temperatures between 800 and $1000^{\circ}C$. High temperature tensile and compression tests were conducted on the ingots for temperatures ranging from 900 to $1230^{\circ}C$, which is the operation temperature employed in Mg production by the Silico-thermic reduction process. The steel containing both N and Y showed much higher strength as compared to 310S.

Effect of Coating Materials on Surface Layer Structures of Austenitic Stainless Steel Castings in Evaporative Pattern Process (소실모형 주조법에서 도형제가 오스테나이트 스테인레스강 주물의 표면층조직에 미치는 영향)

  • Kim, Ji-Youn;Cho, Nam-Don
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.604-615
    • /
    • 1995
  • Austenitic stainless steel castings using expandable polystylene(referred to hereafter as EPS) patterns are often affected by distinctive defects associated with incomplete decomposition of the EPS as the molds are filled with metal. The quality of the castings, with particular reference to carbon pick-up in austenitic stainless steel is further influenced to a significant extent by such factors as reduced pressure, the additive by adding $Na_2CO_3$ in coating. The steel composition and microstructure were examined at the surface layer of castings, at depths of 1mm, by taking successive layers of swarf and analysis. In experiments, the carburizing atmosphere was neutralized, showing that the coating performed efficiently by decomposing almost instantly on heating and liberating $CO_2$. The upper parts of castings obtained using EPS patterns were slightly higher in carbon pick-up than other parts. Comparing the 316L and 304 stainless steel castings, qualitative and quantative differences could be found between the carbon pick-up behaviours as influence of the carbon content and alloying elements. Carbide former such as Cr makes carbon more soluble in the steel. This must make carbon pick-up in the surface layer but at the same time richer in carbon especially in the 304 stainless steel castings.

  • PDF

Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition

  • Yousefi, Amir M.;Lim, James B.P.;Uzzaman, Asraf;Lian, Ying;Clifton, G. Charles;Young, Ben
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.629-659
    • /
    • 2016
  • In cold-formed stainless steel lipped channel-sections, web openings are becoming increasingly popular. Such openings, however, result in the sections becoming more susceptible to web crippling, especially under concentrated loads applied near the web opening. This paper presents the results of a finite element parametric study into the effect of circular web openings on the web crippling strength of cold-formed stainless steel lipped channel-sections for the interior-one-flange (IOF) loading condition. This involves a bearing load applied to the top flange of a length of member, away from the end supports. The cases of web openings located centred beneath the bearing load (i.e. beneath the bearing plate delivering the load) and offset to the bearing plate, are considered. Three grades of stainless steel are considered: duplex EN1.4462, austenitic EN1.4404 and ferretic EN1.4003. In total, 2218 finite element models were analyzed. From the results of the parametric study, strength reduction factors for load bearing capacity are determined, where these reduction factors are applied to the bearing capacity calculated for a web without openings, to take account the influence of the web openings. The strength reduction factors are first compared to equations recently proposed for cold-formed carbon steel lipped channel-sections. It is shown that for the case of the duplex grade, the strength reduction factor equations for cold-formed carbon steel are conservative but only by 2%. However, for the cases of the austentic and ferritic grades, the cold-formed carbon steel equations are around 9% conservative. New strength reduction factor equations are proposed for all three stainless steel grades.

Thermal Fatigue Properties of Synthetic Beat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강의 재현 용접열영향부 열피로 특성)

  • Hong, S.G.;Cho, M.H.;Kang, K.B.
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • Ferritic stainless steel, which has been used as material for decoration parts in automobile, is recently used as material for the exhaust system due to its good performance at high temperature. To improve the fuel efficiency and purify automotive exhaust gas, it is needed to increase the temperature of exhaust gas. However, it is frequently reported that the rising of the temperature of exhaust gas increases thermal stress at exhaust manifold, which results in thermal fatigue failure in welded joints. Therefore, in this study, effects of chemical composition of steel and welding parameters on thermal fatigue properties of synthetic heat affected zone in ferritic stainless steel have been investigated. It has been found that thermal fatigue life in heat affected zone is affected by bead shape of welded joint and amount of soluble Nb in steel. Especially, Nb-Ti added steel has higher thermal fatigue life in comparison to Nb added steel, which is attributed to difference of precipitation behavior in both steels.

Effects of Low Temperature Plasma Nitriding Treatment on Corrosion behavior of Stainless Steel (스테인리스강의 내식성에 미치는 저온 플라즈마 질화의 영향)

  • Kim, H.G.;Bin, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Plasma nitriding of stainless steels has been investigated over a range of temperature from 400 to $500^{\circ}C$ and time from 10 to 20 hours. Characterization of systematic materials was carried out in terms of mechanical properties and corrosion behaviors. The results showed that plasma nitriding conducted at low temperatures not only increased the surface hardness, but also improved the corrosion resistance of STS 316L, STS409L, and STS 420J2. It was found that plasma-nitriding treatment at $500^{\circ}C$ resulted in increasing the corrosion performance of STS 409L and STS 420J2, while STS 316L was observed with server and massive damage on surface due to the formation of CrN.

Effect of the Cooling Rates on the Corrosion Resistance and Phase Transformation of 14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee-Yong;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Martensitic stainless steel is used when mechanical properties such as high tensile strength and hardness are required. Medium carbon-contained martensitic stainless steel which contains more than 0.2 wt% of carbon should be heat-treated and quenched at the temperature where undissolved carbides are totally dissolved into the matrix. In particular, the dissolution and reprecipitation behaviors of various forms of carbides are affected by such parameters as heating rate, heating temperature, duration time and cooling rate. This study is to investigate the effects of heat treatment parameters of 14Cr-3Mo martensitic stainless on corrosion resistance and phase transformation in relation to the dissolution and reprecipitation of carbides.

Effect of Aging Time on the Resistance to Localized Corrosion of the Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Kim, Ji-Soo;Kim, Kwang-Tae;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.209-215
    • /
    • 2010
  • To elucidate the effect of aging time on resistance to localized corrosion of hyper duplex stainless steel, a double-loop electrochemical potentiokinetic reactivation test a potentiodynamic anodic polarization test, a scanning electron microscope-energy dispersive spectroscope analysis, and a thermodynamic calculation were conducted. With an increase in aging time, sigma phases are precipitated much more than chi phases due to the meta-stable chi phase acting as a transition phase. As aging time at $850^{\circ}C$ increases, the corrosion resistance decreases owing to an increase in Cr, Mo and W depleted areas adjacent to the intermetallic phases such as sigma phases and chi phases.