• Title/Summary/Keyword: Stainless Steel Plate

Search Result 266, Processing Time 0.022 seconds

A STUDY ON THE EFFECT OF ORTHODONTIC FORCES AND EXOGENOUS ELECTRIC CURRENTS ON $PGE_2$ CONTNET OF ALVEOLAR BONE IN CATS (교정력 및 외인성 전류가 고양이 치조골의 prostaglandin $E_2$에 미치는 영향에 관한 연구)

  • Kim, Jong-Tae;Kim, Joong-Soo;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.14 no.2
    • /
    • pp.203-215
    • /
    • 1984
  • This experiment was performed to explore the effect of electric currents and orthodontic forces on bone $PGE_2$ content and orthodontic tooth movement on cats. Stainless steel electrodes were connected a power pack consisting of five miniature batteries, a transistor, and a resistor. The current $(10{\pm}2{\mu}A)$ was provided by a constant source encased in a palatal acrylic plate. In first experiment, the cathode was placed mesial to the right maxillary canine tooth and the anode was positioned distal to the tooth, Sham electrodes were placed new the left cuspid, to serve as control. Nine cats were divided into three groups evenly. Groups of three animals were treated with electric currents only-for 1, 3 and 7 days, respectively. In second experiment, electric currents and the orthodontic forces of about 80 gm were applied to the right maxillary canine, and the orthodontic forces only were applied to the left maxillary canine. 3 groups of three cats each were treated in this experiment-for 1, 3 and 7 days, respectively. Alveolar bone samples were obtained from sites of tension and compression as well as from contralateral sites. Bone samples were extracted by homogenization in $40\%$ ethanal. The supernatant partitioned twice with 2 volumes of petroleum ether to remove neutral lipids and the aqueous supernatant partitioned in ethyl acetate. After drying the solvent, $PGE_2$ was measured by radioimmunoassay technique. The obtained results were as follows. 1. Teeth treated with combined force and electricity moved faster than those treated with force alone. 2. Alveolar bone $PGE_2$ content of electric stimulation was increased at both electrodes. 3. Alveolar bone $PGE_2$ content of mechanical stimulation at compression sites was gradually increased at all time period. At tension site, $PGE_2$ content increased after 1 day of mechanical stimulation remained elevated at all time period. 4. Alveolar bone $PGE_2$ content of compression sites was increased more than that of tension sites from mechanical stimulation as well as electrical stimulation.

  • PDF

Pasteurization Efficiency and Physico-chemical Changes of Soymilk HTST Pasteurized Using Microwaves (두유의 마이크로파 고온단시간 살균시 살균효과 및 이화학적 성분 변화)

  • Kim, Suk-Shin;Lee, Joo-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1196-1202
    • /
    • 1999
  • This work was to determine the microbial and physico-chemical changes of HTST-pasteurized soymilk using microwave energy. Soymilk was HTST pasteurized$(at\;90^{\circ}C\;for\;20\;sec)$ by three methods: by heating in a stainless steel tube immersed in a hot water bath(MP0), by heating in a microwave cavity to a defiled temperature and then holding in a hot water bath(MP1), and by both heating and holding in a microwave cavity(MP2). The microbial quality based on the total plate count was in the order of MP0, MP2 and MP1. The three samples pasteurized by different methods showed the similar microbial quality with respect to the coliform count, psychrotrophic bacterial count and phosphatase activity. The destruction of trypsin inhibitor was in the order of MP0, MP1 and MP2. There were no significant differences in pH, titratable acidity, viscosity and vitamin $B_2$ content before and after pasteurization and among the different pasteurization methods. The similar or higher quality retention of the MP1 or MP2 supports the possibility of using microwave energy for the HTST pasteurization of soymilk and other fluid food products.

  • PDF

Study on microstructure and mechanical properties of friction stir welded duplex stainless steel (마찰교반접합된 이상 스테인리스강의 미세조직 및 기계적 특성에 관한 연구)

  • Choi, Don-Hyun;Ahn, Byung-Wook;Yeon, Yun-Mo;Song, Keun;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.24-24
    • /
    • 2010
  • 마찰교반접합법은 특정한 회전수로 회전하는 용접 툴을 이용하여 접합하고자 하는 피접합재의 맞댄면에 삽입시킨 후 툴을 이동시키거나 혹은 시편을 견고하게 고정시킨 장치(backing plate)가 움직여 고상 상태에서 접합이 이루어진다. 알루미늄, 마그네슘 등 비교적 융점이 낮은 저융점 재료의 재료에 처음 적용이 되어 많은 연구가 활발히 진행되었고 타 용접방법에 비해 우수한 접합특성을 나타내었다. 최근 이러한 마찰교반접합은 이러한 저융점 재료를 넘어서 스틸, 타이타늄, 니켈 등과 같은 고융점 재료 등에 대한 적용이 늘어나고 있다. 마찰교반접합을 이용하여 이러한 고융점 재료의 접합 경우 내마모성 및 내열성 등의 내구성이 갖추어진 툴과 이러한 툴을 냉각시킬 수 있는 냉각 장치 등이 필요로 하나 경제적 측면이나 접합부의 우수한 특성 등을 고려 할 때 그 적용 및 발전 가능성이 매우 높다고 볼 수 있다. 2상 스테인레스 강은 금속 조직적으로 페라이트와 오스테나이트 상이 거의 1:1의 동등한 비율로 매우 미세하게 결합된 구조를 가지고 있다. 또한 이상 스테인레스 강은 각상의 개개의 특성에 기인하여 염소 분위기에서 응력부식 저항성이 우수하고, 공식과 틈부식에 대한 저항성이 매우 뛰어나다. 그리고 이상 스테인레스 강은 비교적 고가인 Ni이 일반 오스테나이트 스테인리스 강의 약 1/2의 수준으로 적게 포함이 되어 경제적인 이점을 지니고 있으며 또한 용접성이 좋아 산업계의 수요는 현재 점차 증가하고 있는 상황이다. 하지만 이러한 이상 스테인리스 강은 용접 후 페라이트 상의 조대화, 그리고 페라이트 상의 분율이 오스테나이트 상의 분율보다 높아지게 되어 용접부에서의 저온 인성 감소 및 내식성 저하 등의 문제가 발생하게 된다. 그리하여 용접 시 이러한 문제점을 해결하기 위해서는 입열량의 조절이 가장 필요로 하는 것으로 알려져 있다. 본 연구에서는 마찰교반용접을 이용하여 두께 3mm의 대표적인 이상 스테인리스 강인 SAF2205 스테인리스 강에 대해 맞대기 마찰교반접합을 실시하였다. 툴 회전속도를 변수로 하여 접합을 실시하였으며 접합 시 툴은 $Si_3N_4$ 툴을 사용하였다. 접합 후 외관상태 점검, 미세조직 관찰, 경도 및 인장강도 측정 등의 실험을 실시하였고, 이러한 결과를 이용하여 미세조직과 기계적 특성과의 관련성을 조사하였다.

  • PDF

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Electrodeposition of some Alpha-Emitting Nuclides and its Isotope Determination by Alpha Spectrometry (몇가지 알파입자 방출 핵종의 전해석출 및 알파 스펙트럼 측정에 의한 그의 동위원소 정량)

  • Key-Suck Jung;In-Suck Suh
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.279-286
    • /
    • 1983
  • An apparatus was made for the electrodeposition of alpha emitting actinide nuclides, $^{207}Bi$ and $^{210}Po$. The electrodeposition was made on a polished stainless steel plate cathode. The anode was made of platinum wire and to stir the solution. With the ammonium chloride as electrolyte initial pH = 4, chloride concentration = 0.6M and solution volume = 15ml, a current of 1.5 ampere(current density = 0.59A/$cm^2$) was flowed for 100 minutes for the quantitative recovery of electrodeposition and on average recovery of 98.3% was obtained within ${\pm}$0.7% uncertainty. Alpha spectrometry of the electrodeposited sample showed alpha peaks from $^{210}Po, ^{234}U$ and $^{239}Pu$ having energy resolution (FWHM) of 18.3, 21.8 and 36.0 keV respectively. The electrodeposition and alpha spectrometry for a natural uranium sample of domestic origin gave $^{238}U : ^{234}U = 1 : 6.1{\times}10^{-5}$ and for a neutron-irradiated uranium sample did $^{238}U : ^{239}Pu : ^{241}Am = 100 : 0.0263 : 5.20{times}10^{-5}$. The result of $^{238}U$ determination in the irradiated sample by electrodeposition-alpha spectrometry was in accord within ${\pm}1.6%$ of relative error with the results of solid fluorimetry and mass spectrometry. For $^{239}Pu$ the result of electrodeposition-alpha spectrometry was in accord within ${\pm}$4.0% of relative error with the results of anion exchange separation and the thenoyltrifluoroacetone(TTA) extraction both followed by alpha spectrometries.

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF