• Title/Summary/Keyword: Stagnation height

Search Result 28, Processing Time 0.032 seconds

A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet (다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구)

  • Kim, Sang-Keun;Ha, Man-Yeong;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

Characteristics of Vertically Injected Buoyant Jet of Highly Diluted Propane (과다 희석된 프로판제트의 상향분사시 부력에 의한 유동특성)

  • Chun Kang Woo;Kim Junhong;Won Sang Hee;Chung Suk Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.529-532
    • /
    • 2002
  • In coflow jets with relatively large size nozzle and low fuel jet velocity, the buoyancy effect arises from the density difference between fuel and air streams. The present study investigated the behavior of such a buoyant cold Jet both numerically and experimentally, especially when the fuel stream has higher density than air. It has been demonstrated that the cold jet has a circular cone shape since upwardly injected fuel jet decelerates and forms a stagnation region, when the fuel jet was composed of propane highly diluted with nitrogen. When the fuel was moderately diluted, numerical results showed the Kelvin-Helmholtz type instability along the mixing layer of the jet. The stagnation height increases nonlihearly with fuel jet velocity with the power of approximately 1.64.

  • PDF

Buoyancy Effect on Stable and Oscillating Lifted Flames in Coflow Jets for Highly Diluted Propane (질소희석된 프로판 동축류 버너에서 부상화염에 대한 부력효과)

  • Kim, Jun-Hong;Shin, Moo-Kyung;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.9-16
    • /
    • 2001
  • When large size nozzle with low jet velocity is used, the buoyancy effect arises from the density difference among propane, air, and burnt gas. Flame characteristics in such buoyant jets have been investigated numerically to elucidate the effect of buoyancy on lifted flames. It has been demonstrated that the cold jet has circular cone shape since upwardly injected propane jet decelerates and forms stagnation region. In contrast to the cold flow, the reacting flow with a lifted flame has no stagnation region by the buoyancy force induced from the burnt gas. To further illustrate the buoyancy effect on lifted flames, the reacting flow with buoyancy is compared with non-buoyant reacting flow. Non-buoyant flame is stabilized at much lower height than the buoyant flame. At a certain range of fuel jet velocities and fuel dilutions. an oscillating flame is demonstrated numerically showing that the height of flame base and tip vary during one cycle of oscillation. Under the same condition. non-buoyant flame exhibits only steady lifted flames. This confirms the buoyancy effect on the mechanism of lifted flame oscillation.

  • PDF

A Experimental Study on the Observation of Free-Surface Flow around Ship's Bow (선수부 주위의 자곡표면류의 유동관측에 관한 실험적 고찰)

  • 박명규;김동률
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.37-48
    • /
    • 1993
  • When the vessel is running at the very low Froude numbers, the free-surface is difficult to be disturbed, wave-making is negligible, and the double -model velocity potential gives a very good approximation for calculating the velocity distribution just outside the boundary layer. If the speed of incident flow is gradually increased, the most perceptible change is the rise of the flow surface at stem. With further increase in speed, the nature of the flow at the bow changes completely, The flow ahead of the bow becomes more distrubed, the rise at the stem to stagnation height disappear, and the first wave crest, of less than the stagnation height, appears a small distance downstream from the stem. The present study is concerned with a small region of this flow, mainly in the bow region. The present investigation is primarily an experimental study of the flow in the bow region of s ship model, and it is undertaken in order to investigated systematically, the effect of bow geometry on this flow. The long-range objective is to use these results to guide the development of a mathematical model for predicting the flow about a ship's bow.

  • PDF

An Experimental Study on Heat Transfer of Semi-cylindrical Surface by Impinging Water Jet (충돌수분류(衝突水噴流)에 의한 Semi-cylinder면(面)에서의 열전달(熱傳達)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Ohm, K.C.;Choi, G.G.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.6
    • /
    • pp.708-716
    • /
    • 1988
  • Local heat transfer coefficients were measured on semi-cylinders on which a circular water jet impinged in crossflow. The ratio of the semi-cylinder's diameter and the nozzle outlet diameter were varied parametrically, as were the Reynolds number and the supplementary water heights. The measurements showed that the circumferential distribution of the heat transfer coefficient peaked at the stagnation point. For a fixed supplementary water height, the peak heat transfer coefficient was not depend on the curvature of test specimen(d/D). Optimum height of supplementary water which brought about the augmentation of heat transfer at the stagnation point was S/D=1. The Nusselt number decreased as the circumferential distance or angle increased. The circumferential distribution of dimensionless heat transfer (Nu/Nus) was independent of d/D ($d/D{\geq}8.33$), but for the d/D<8.33, it was depended on d/D. At a fixed angle of specimen, dimensionless heat transfer (Nu/Nus) decreased as the ratio d/D increased. The extent of the decrease between d/D=6.67 and 8.33 was markedly greater than that between d/D=8.33 and 10, or d/D=10 and 11.67.

  • PDF

A Numerical Study of Planar Laminar Impingement Jet with a Confinement Plate (제한면을 가지는 이차원 층류 충돌젯의 수치적 연구)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.414-423
    • /
    • 1994
  • The planar laminar impingement jet with a confinement plate has been studied numerically. Discretzing the convection term with the QUICKER scheme, the full Navier-Stokes equations for fluid flow were solved using the well known SIMPLER algorithm. The flow characteristics with Reynolds number and jet exit velocity profile effects on it were considered for H=3, Re=200 - 2000. Results show that vortical flow forms in turn along the confinement and impingement plates as the Reynolds number increases and such a complicated flow pattern has never been reported prior. The jet exit velocity profile is shown to do an important role in determining the position of vortex flow and its size as well as in stagnation and wall jet flow region. Parabolic jet exit profile results in peak of skin friction 1.4-1.6 times greater than that of uniform profile. The channel height effects are also studied and shown to have an effect on flow pattern similar to that of Reynolds number. Also shown is that effects of the jet exit velocity profile becomes less significant over a certain channel height.

A Study on Ventilation Characteristics of LNG Carrier Hood room by PIV and CFD (PIV와 CFD에 의한 LNG선박의 Hood room 환기특성에 관한 연구)

  • Cho, D.H.;Kim, D.C.;Kim, M.E.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.673-679
    • /
    • 2000
  • LNG Carriers are currently known as sole commercial means of shipping natural gas on the sea. They are designed to proven dangerous explosion for shipping a lot of gas over long distance. In this study. In this study, a scaled model chamber was made to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model using visualization equipments with laser apparatus and image intensifier CCD camera gated by an AOM controller Twelve different kinds of measuring area were selected as experimental condition. Instant simultaneous velocity vectors at whole field were measured by using 2-D PIV system which software adopts two-frame grey-level cross correlation algorithm. To look into stagnation area of hood room for LNG carrier, a three-dimensional numerical simulation with standard ${\kappa}-{\varepsilon}$ model was carried out by using PHOENICS for three kinds of Reynolds number, $6.5{\times}10^3$, $9.7{\times}10^3\;and\;1.29{\times}10^4$, based on the cavity inlet velocity and cavity height. The flow pattern showed the large scale counter-clockwise forced-vortex rotated at center area, small eddies at each corner and stagnation area located at left-back upper side of model.

  • PDF

A Study of Flow Control in a Combustion Chamber (연소실내의 유동제어에 관한 연구)

  • 김정훈
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.86-92
    • /
    • 2000
  • Two-phase flow in a combustion chamber is experimentally analyzed according to the five different conditions in the Reynolds number of $1.02{\times} 10^4$ As the height difference between the primary and secondary jets increases the secondary has a little effect on the primary. In the case of the same height difference the primary jet is affected as the velocity of secondary increases. The primary-jet flow field causes the particle concentration since the particle stagnation phenomena appear in the recirculation zone. The particle concentration is controlled by the velocity of secondary jet the height difference and the angle of primary jet in the test section.

  • PDF

Experimental Study of Thrust Vectoring of Supersonic Jet Utilizing Co-flowing Coanda Effects (동축류의 코안다 효과를 이용한 초음속 제트의 추력편향제어에 관한 실험적 연구)

  • Yoon, Sang-Hun;Jun, Dong-Hyun;Heo, Jun-Young;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2012
  • The characteristics of two-dimensional supersonic coanda flow was experimentally investigated. For various ratios of slot height to coanda wall's radius of curvature, surface roughnesses, and jet stagnation pressures, the characteristics of the supersonic coanda flow such as shock structures and hysteresis were observed by flow visualization. It was found that the characteristics of hysteresis of the coanda jet was related to the surface roughness of the coanda wall. The study was further extended for application of the tangentially injected coanda jet to control co-flowing highly compressible main jet direction. It was noticed that the stagnation pressure of the main jet as well as the ratio of the slot height to coanda wall's radius of curvature wall was an influencing factor in the performance of the fluidic thrust vectoring method.

Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine (스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성)

  • Oh, Ju-Young;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • In combustor of SCRamjet of air-breathing engine type, the flow duration time is very short because of the supersonic air flow. In this short duration, the whole process of combustion should be done, so it is very important to study supersonic combustion technologies. In this study, we focus fuel-air mixing enhancement method using cavity and conducted 3-dimensional Navier-Stokes computational analysis. Cavity height is fixed by 10mm, length is changed from 0 to 40mm. There is a supersonic jet injection downstream of the cavity and the hole size is 1mm. As a result, the higher ratio of cavity length/height is, the higher value of vorticity gets. The increased area of vorticity expands to upper and sidewise combustor. However, the stagnation pressure loss which generates thrust loss becomes higher when the vorticity is higher. Considering these result, we can conclude that optimized design which considers the highest mixing performance and the least stagnation pressure loss is needed.