• 제목/요약/키워드: Stagnation Pressure

검색결과 158건 처리시간 0.031초

2차원 소형 초음속 노즐 하류의 압축성 유동 구조 해석 (The Compressible flow structure behind the exit of a two-dimensional supersonic micro-nozzle)

  • 권순덕;김성초;김정수;최종욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.323-326
    • /
    • 2006
  • This paper presents the computational results for the two-dimensional compressible non-reacted flow in a converging-diverging micro thrust nozzle of which the ratio of exit to throat width (0.541 in.) is 1.8. The RNG model is applied to calculate the turbulence by loading the standard coefficients. The results agreed very well with the experiments in the view of the shock structure and the pressure distribution at the various pressure ratios between the stagnation and the environmental states. The plume structures are also discussed on the view of the shock-cell structure.

  • PDF

증기터빈 익렬유동의 에너지손실에 관한 실험적 연구 (An Experimental Study on Energy Losses in Steam Turbine Cascade Flow)

  • 안형준;권순범
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3022-3030
    • /
    • 1995
  • The irreversibility of condensation process in the supersonic flow of steam turbine cascade causes the entropy to increase and the total pressure loss to be generated. In the present study, in order to investigate the moist air flow in two dimensional steam turbine cascade made as the configuration of the last stage tip section of the actual steam turbine moving blade, the static and total pressures along suction side of the blade are measured by pressure taps and Pitot tube. The flow field is visualized by a Schlieren system. The effects of stagnation temperature and the degree of supersaturation on energy loss and entropy change in the flow are clearly identified.

Upwind Navier-Stokes 방법을 이용한 다양한 무딘물체 유동장의 수치 해석적 연구 (Numerical Analysis of Flowfield over Various Blunt-bodies Using Upwind Navier-Stokes Method)

  • 서정일;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.78-83
    • /
    • 1998
  • A finite-difference method based on conservative supra characteristic method(CSCM) type upwind flux difference splitting has been studied on the bluntness effect on the wall heat transfer rate and wall pressure over blunt-body. The results show that the stagnation heating varies inversely with the square root of the nose radius.

  • PDF

초음속 유도탄 공력가열 예측 (PREDICTION OF AERODYNAMIC HEATING ON A SUPERSONIC MISSILE)

  • 선철;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.134-137
    • /
    • 2007
  • Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.

  • PDF

Exponential Nozzle을 사용한 Water Jet 발생에 관한 연구 (A study on the Formation of Water Jet From an Exponential Nozzle)

  • 김상진;윤의수;최태민
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.5-11
    • /
    • 1990
  • Most water cannon machines use compressed gas to accelerate a piston which extrudes water through a cumulation nozzle. Very high jet stagnation-pressures can be achieved by using a specially-shaped nozzle which is initially filled with air or vacuum. The objective of this study was to establish the basic technology of water cannon using exponential type nozzle. An experimental water cannon including high pressure components such as exponential nozzle and 300atm air resrvior were designed and tested. Parameters that influence the performance of the system and jet characteristics were examined.

  • PDF

터보팬엔진 흡입구에 버드 스트라이크를 막기 위한 장치를 달았을 때 엔진 흡입구의 성능 분석

  • 차상현
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2016년)
    • /
    • pp.9-14
    • /
    • 2016
  • 버드 스트라이크는 항공기 안전에 큰 위협을 주고 있다. 새를 막기 위하여 공항에서 여러 가지 방법들을 이용해 새를 쫓고 있지만 임시방편인 경우가 많거나 근본적인 방법은 아니다. 본 연구에서는 이러한 버드 스트라이크를 막기 위하여 새를 막는 장치를 엔진 흡입구에 장착하고, 이 흡입구가 엔진 흡입구의 성능에 어떠한 영향을 주는지 알아보려고 한다.

  • PDF

대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계 (Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles)

  • 박승식;유근혜
    • 한국대기환경학회지
    • /
    • 제34권3호
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

화학레이저 구동용 이젝터 시스템 개발 (II) - 이차목 형태의 환형 초음속 이젝터 최적 설계 - (Development of an Ejector System for Operation of Chemical Lasers (II) - Optimal Design of the Second-Throat Type Annular Supersonic Ejector -)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1231-1237
    • /
    • 2004
  • Determination of geometric design parameters of a second-throat type annual supersonic ejector is described. Tested geometric parameters were primary nozzle area ratio, cross-sectional area of second-throat, L/D ratio of second-throat and primary flow injection angle. Varying these four geometric parameters, we build a test matrix made of 81 test conditions, and experimental apparatus was fabricated to accommodate them. For each test condition, the stagnation pressure of primary flow and the static pressure of the secondary flow were measured simultaneously along with their transition to steady operation and finally to unstarting condition. Comparing the performance curve of every case focused on starting pressure, the unstarting pressure and the minimum secondary pressure, we could derive correlations that the parameters have on the performance of the ejector and presented the optimal design method of the ejector. Additional experiments were carried out to find effects of temperature and mass flow rate of the secondary flow.

Gas Effect at High Temperature on the Supersonic Nozzle Conception

  • Boun-jad, Mohamed;Zebbiche, Toufik;Allali, Abderrazak
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.82-90
    • /
    • 2017
  • The aim of this work is to develop a new computational program to determine the effect of using the gas of propulsion of combustion chamber at high temperature on the shape of the two-dimensional Minimum Length Nozzle giving a uniform and parallel flow at the exit section using the method of characteristics. The selected gases are $H_2$, $O_2$, $N_2$, CO, $CO_2$, $H_2O$, $NH_3$, $CH_4$ and air. All design parameters depend on the stagnation temperature, the exit Mach number and the used gas. The specific heat at constant pressure varies with the temperature and the selected gas. The gas is still considered as perfect. It is calorically imperfect and thermally perfect below the threshold of dissociation of molecules. A error calculation between the parameters of different gases with air is done in this case for purposes of comparison. Endless forms of nozzles may be found based on the choise of $T_0$, $M_E$ and the selected gas. For nozzles delivering same exit Mach number with the same stagnation temperature, we can choose the right gas for aerospace manufacturing rockets, missiles and supersonic aircraft and for supersonic blowers as needed in settings conception.

Effect of Stagnation Temperature on the Supersonic Flow Parameters with Application for Air in Nozzles

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.13-26
    • /
    • 2006
  • When the stagnation temperature of a perfect gas increases, the specific heat for constant pressure and ratio of the specefic heats do not remain constant any more and start to vary with this temperature. The gas remains perfect: its state equation remains always valid, with exception that it will be named by calorically imperfect gas. The aim of this research is to develop the relations of the necessary thermodynamics and geometrical ratios. and to study the supersonic flow at high temperature. lower than the threshold of dissociation. The results are found by the resolution of nonlinear algebraic equations and integration of complex analytical functions where the exact calculation is impossible. The dichotomy method is used to solve the nonlinear equation. and the Simpson algorithm for the numerical integration of the found integrals. A condensation of the nodes is used. Since. the functions to be integrated have a high gradient at the extremity of the interval of integration. The comparison is made with the calorifcally perfect gas to determine the error made by this last. The application is made for the air in a supersonic nozzle.