• Title/Summary/Keyword: Stagger Angle

Search Result 38, Processing Time 0.023 seconds

Effect of Geometric Parameters in a Newly Designed Microchannel

  • Heo H. S.;Suh Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.121-122
    • /
    • 2003
  • In this study a microchannel with various arrangement of blocks is newly proposed. This design comprises periodically arranged simple blocks. In this configuration, the stirring is greatly enhanced at a certain geometric parameter set. To characterize the flow field and the stirring effect both the numerical and experimental methods were employed. To obtain the velocity field, three-dimensional numerical computation to the Navier Stokes equations are performed by using a commercial code, FLUENT 6.0. The fluid-flow solutions are then cast into studying the characteristics of stirring with the aid of Lyapunov exponent. The numerical results show that the particles' trajectories in the microchannel heavily depend on the block arrangement. It was shown that the stirring is significantly enhanced at larger block-height and it reaches maximum when the height is 0.8 times the channel width. We also studied the effect of the block stagger angle, and it turns out that the stirring performance is the best at the block angel ${45^\circ}$.

  • PDF

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.

On the Manoeuvring Motion Considering the Interaction Forces in Confined Waters

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.639-643
    • /
    • 2003
  • The emphasis is put on the detailed knowledge on manoeuvring characteristic for the safe navigation while avoiding terrible collision between ships and on the guideline to the design and operation of the ship-waterway system The numerical simulation of manoeuvring motion was carried out parametrically for different ship types, ship-velocity ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference (hereafter, $U_2$/$U_1$ ) between two ships were considered as 0.6, 1.2, 1.5. From the inspection of this investigation, it indicates the following result. Considering the interaction force only as parameter, the lateral distance between ships is necessarily required for the ship-velocity ratio of 1.2, compared to the cases of 0.6 and 1.5 regardless of the ship types. Furthermore, regardless of the ship-velocity ratio, an overtaking and overtaken vessel can be manoeuvred safely without deviating from the original course under the following conditions: the lateral distance between two vessels is approximately kept at 0.5 times of ship-length and 5 through 10. degrees of range in maximum rudder angle. The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.

Development of a Test Rig for Three-Dimensional Axial-Type Turbine Blade (축류형 3차원 터빈익형의 성능시험장치 개발)

  • Chang, B.I.;Kim, D.S.;Cho, S.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.453-460
    • /
    • 2000
  • A test rig is developed for performance test of 1 stage axial-type turbine which is designed by meanline analysis, streamline curvature method, and blade design method using configuration parameters. The purpose of this study is to find the best configuration parameters for designing a high efficiency axial-type turbine blade. To measure the efficiency of turbine stage, a dynamo-meter is installed. Two different stators which are manufactured as an integrated type are developed, and a rotor blade and 5 sets disc are developed for setting different stagger angle. The tip and hub diameters of the test turbine are 300 and 206.4mm, respectively. The rotating speed is 1800RPM, and the extracted power is 2.5kW. Flow coefficient is 1.68 and the reaction factor at meanline is 0.373. The number of stator and rotor of test turbine are 31 and 41, respectively. The Mach number of stator exit flow near hub is 0.164.

  • PDF

Rotordynamic Analysis of Labyrinth Seal with Swirl Brake (스월 브레이크가 장착된 래버린스 씰의 동특성 해석)

  • Lee, Jeongin;Suh, Junho
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this research, the rotordynamic characteristics of the labyrinth seal with and without swirl brake were predicted using the computational fluid dynamic (CFD) model. Based on previous studies, a simple swirl brake consisting of square vanes without stagger angle is designed and placed in front of the seal inlet. The rotating frame of reference is utilized to consider the whirling motion of the rotor in the steady-state analysis since the whirling motion is transient behavior in nature. CFD analysis was performed in the range of -1 to 1 pre-swirl ratio for a given seal and swirl brake design and operating conditions. The CFD analysis result shows that the swirl brake effectively reduces the pre-swirl since the circumferential fluid velocity of labyrinth seal with swirl brake was lower than that without swirl brake. The cross-coupled stiffness coefficient, which is greatly affected by the circumferential fluid velocity, increased with an increasing pre-swirl ratio in a seal without a swirl brake but showed a low value in a seal with a swirl brake. The change in the damping coefficient was relatively small. The effective damping coefficient of the labyrinth seal with swirl brake was generally constant and showed a higher value than the labyrinth seal without swirl brake.

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren;Wenjing Guo;Xuechun Liu;Bin Wang;Piyong Yu;Xiaowen Ji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence (유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soogab;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.

Study on Improved Road Geometry Conditions of Chicane Considering the Relationship between Road Geometry and Carbon Emissions Reduction (도로 기하구조와 탄소배출 저감의 연계성을 고려한 시케인 기하구조 조건의 개선에 관한 연구)

  • Lee, Hyung-won;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.115-122
    • /
    • 2015
  • PURPOSES: Recently, many local governments have applied chicanes for traffic calming to ensure environment-friendly comfortable and safe roads. However, the geometry of a chicane is designed for speed reduction using a curved portion. This study aims to improve the road geometry conditions of chicanes for reducing carbon emissions and maintaining appropriate driving speeds by considering the relationship between road geometry and carbon emissions. METHODS: This study was conducted as follows. First, carbon emissions corresponding to changing acceleration of vehicles were studied. Second, vehicle acceleration caused by the relationship between the curve radius and the straight length was studied. Accordingly, desirable conditions of curve radius and length of the straight section for reducing carbon emissions were proposed. RESULTS: The existing literature on chicanes present the minimum value of stagger length and path angle in the primary variable condition. This study suggests the maximum values of the curve radius and length of straight section in the primary variable condition. Therefore, if a vehicle's speed at a chicane is 30 km/h, this study suggests a curve radius of up to 24 m. In addition, if the vehicle's speed is 24 km/h, this study suggests a length of straight section of up to 6.6 m. These are the geometric conditions for considering the control of acceleration to the vehicle's maximum speed. CONCLUSIONS: This paper proposes an application of geometric conditions to reduce carbon emissions and maintain appropriate speeds of vehicles through a combination of curve radius and length of straight section.