• Title/Summary/Keyword: Stage Separation

Search Result 410, Processing Time 0.027 seconds

Stage Separation Analysis of Launch Vehicle Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 발사체 단 분리 운동 분석)

  • Oh, Choong-Seok;Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.341-348
    • /
    • 2015
  • This paper addresses Monte-Carlo simulation analyses for the stage separation of the general launch vehicle. The stage separation event of the launch vehicle occurs during a very short time and is related with many dynamic parameters. The stage separation is a critical event in that the launch fails if there is a collision during the stage separation. The stage separation analyses was conducted for the general launch vehicle to confirm the separation without collision within the designed clearance in case of the random input parameters. This paper presents the stochastic results of the stage separation of the launch vehicle using the Monte-Carlo simulation.

Study on multi-stage magnetic separation device for paramagnetic materials operated in low magnetic fields

  • F. Mishima;Aoi Nagahama;N. Nomura;S. Nishijima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.13-17
    • /
    • 2023
  • Magnetic separation technology for small paramagnetic particles has been desired for the volume reduction of contaminated soil from the Fukushima nuclear power plant accident and for the separation of scale and crud from nuclear power plants. However, the magnetic separation for paramagnetic particles requires a superconducting high gradient magnetic separation system applied, hence expanding the bore diameter of the magnets is necessary for mass processing and the initial and running costs would be enormous. The use of high magnetic fields makes safe onsite operation difficult, and there is an industrial need to increase the magnetic separation efficiency for paramagnetic particles in as low a magnetic field as possible. Therefore, we have been developing a magnetic separation system combined with a selection tube, which can separate small paramagnetic particles in a low magnetic field. In the previous technique we developed, a certain range of particle size was classified, and the classified particles were captured by magnetic separation. In this new approach, the fluid control method has been improved in order to the selectively classify particles of various diameters by using a multi-stage selection tube. The soil classification using a multi-stage selection tube was studied by calculation and experiment, and good results were obtained. In this paper, we report the effectiveness of the multi-stage selection tube was examined.

Staging Flow Analysis with forward Ejector (전방 분출이 있는 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.145-150
    • /
    • 2004
  • In this study the numerical analysis on staging flow with forward ejector is conducted. The forward ejector plays a vital role in staging, which jets out from aftbody. This staging environment needs careful flow analysis for securing staging safety Present study investigates the steady inviscid staging flow phenomena with variation of separation distance. The performance index is forebody base pressure coefficients. The three dominant flow phenomena are observed according to separation distance which could be told as impinging stage, cavity vortex dominancy stage, and pure base flow characteristics stage. Impinging stage shows high thrust for forebody as one might think. However, important point is that cavity vortex dominancy stage can be more favorable for separation than impinging stage as one simply think in certain separation distance.

  • PDF

Application of Reverse Osmosis Plate and Frame Type for Separation and Concentration Heavy Metal[Cu(II), Zn(II)] (중금속[Cu(II), Zn(II)]의 분리 및 농축을 위한 역삼투 판틀형 모듈의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek;Kim, Jong-Pal
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • This study was focused on experiment for the separation and concentration process of Cu(II), Zn(II) solution with the variation of applied pressure and concentration using reverse osmosis plate and frame modules. Rejection coefficient and degree of concentration for Cu(II) component using single and multi-stage reverse osmosis process were showed 96.3~97.8%, 0.044~0.191(in single-stage), 96.3~98.4%, 0.400~2.264(in multi-stage) within the range of experimental condition, respectively. Those of Zn(II) were 93.3~97.1%, 0.019~0.395(in single-stage), 96.3~98.2%, 0.365~1.454(in multi-stage), respectively. Degree of concentration of multi-stage were higher than those of single-stage. Heavy metal[Cu(II), Zn(II)] separation was very efficient in using reverse osmosis plate and frame type modules. Separation efficiency for a mixed solution Cu(II) and Zn(II) was higher than those of each one of Cu(II) and Zn(II).

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Treatment of ASR from End-of-Life Vehicles by Air and Gravimetric Separation (廢自動車 ASR의 風力 및 比中選別에 의한 處理 硏究)

  • Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • A study on the air and gravity separation has been performed for the removal of chlorine containing materials from ASR of end-of-life vehicles. The gravity separation was also conducted on waste plastics collected from ASR. In this work, ASR were previously shredded to pass through 8 mm sieve prior to separation tests and the gravity separation of waste plastics was conducted for three different particle sizes. The two-stage air classification was conducted with the range of air flow rate of 9~20 M$^3$/hr at first stage and 25~34 M$^3$/hr at second stage, respectively. The fraction of overflow product was remarkably increased in the 2nd stage air classification because of high air flow rate while that of underflow product obtained from 1st stage air classification was found to be 62~66%. From the results of gravity separation on waste plastics, it was also found that the amount of the float product was much greater than sink product. It is believed that the gravity separation may be used very efficiently for the removal of calorine bearing materials from waste plastics.

Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme (병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석)

  • Ko Soon-Heum;Choi Seongjin;Kim Chongam;Rho Oh-Hyun;Park Jeong-joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

Experimental Study on Separation Capacity of Cascade Impactor for Liquid Aerosols

  • Ma, Chang-Jin;Mikio-Kasahara;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.9-16
    • /
    • 2001
  • To evaluate the correct separation capacity of cascade impactor for liquid aerosol, theoretical and experimental calculations of 50% cut-off diameter(ECOD(sub)50) were performed. A recalculation method of original diameter for hemispheric liquid aerosol collected on casecad impactor is also proposed newly using fixation technique. Calculated values for theoretical (ECOD(sub)50) of 40stage cascade impactor are 20, 6.4, 2.8, and 1.4$\mu\textrm{m}$ at 1st- ,2nd-, 3rd- and 4th-stage, respectively. A good agreement between the result of theoretical (ECOD(sub)50) and that og experimental ones was obtained at Stage 2 and 3. On the other hand, relatively large differences were found at Stage 1 and 4. Fixation for liquid aerosols using ${\alpha}$-cyanoacrylate monomer was performed successfully. The orignal diameter of liquid aerosols collected on each stage was calculated. The maximum levels of number size distribution curves at each stage are 19.8, 6.5, 3.1 and 1.5 $\mu\textrm{m}$ at 1st-, 2nd-, 3rd- and 4th-stage, respectively. The distortion of separation capacity of cascade impactor due to the split, merger, disappearance, and evaporation of liquid aerosols in the fluid did not occur.

A Qualitative Study on the Adjustment of Separated Families in South and North Korea : Focusing on Separated Families Living in South Korea (남북이산가족의 적응에 관한 질적 고찰 : 남한 거주 이산가족을 중심으로)

  • Choi, Youn-Shil
    • Journal of Families and Better Life
    • /
    • v.25 no.1 s.85
    • /
    • pp.183-207
    • /
    • 2007
  • The purpose of this study was to improve the understanding of the essential experience of Separated Families in South and North Korea in a socio-cultural context and to explore their post-separation adjustment process from the perspective of the families. Major findings in this study are summarized as follows. First, 'han' was the central phenomenon that the participants experienced following their separation. Second, the core issue in the process of post-separation adjustment was 'accepting the separation and rearrangement of reality for reunion', and over time the participants went through four stages in their adjustment process: the stage of being overwhelmed, the stage of conflict, the stage of awareness, and the stage of acceptance. Third, the main factors affecting the participants' adjustment were supportive systems, available resources(individual variables) and interaction with other separated families. fourth, four types were observed in the typology of adjustment and reunion of the participants.

Separation Characteristic of Shatter Resistant Sesame After Threshing

  • Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.299-303
    • /
    • 2014
  • Purpose: This study set out to develop a machine for separating shatter-resistant sesame after threshing. Methods: Three grades of sieve and different blower speeds were tested for a separation system that had been designed specifically for shatter-resistant sesame. Performance tests were run to evaluate the sieve and blower systems in terms of the sesame separation and loss ratios. Results: Tests of the first separation stage using the sieve system revealed the optimum sieve perforation size to be 5 mm. Tests of the second separation stage using the blower system identified the optimum blower speed as being 220 rpm. The optimum separation and loss ratios, of 96.5% and 3.5%, respectively, were obtained at a blower speed of 220 rpm. Conclusions: These results will be useful for the design, construction, and operation of threshing harvesters. For shatter-resistant sesame, an optimum blower speed of 220 rpm was identified.