• Title/Summary/Keyword: Stacked-Based structure

검색결과 71건 처리시간 0.035초

Towards Thermally Stable Tandem Organic Solar Cells

  • Yang, Feng;Wang, Sihan;Kim, Ji-Hwan;Kim, Yong-Sang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.410.2-410.2
    • /
    • 2016
  • Tandem structure is promising in organic solar cells because of its double open-circuit voltage (VOC) and efficient photon energy conversion. In a typical tandem device, the two single sub-cells are stacked and connected by an interconnecting layer. The fabrication of two sub-cells are usually carried out in a glovebox filled with nitrogen or argon gas, which makes it expensive and laborious. We report a glovebox-free fabricated inverted tandem organic solar cells wherein the tandem structure comprises sandwiched interconnecting layer based on p-doped hole-transporting, metal, and electron-transporting materials. Complete fabrication process of the tandem device was performed outside the glove box. The tandem solar cells based on poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) can realize a high VOC, which sums up of the two sub-cells. The tandem device structure was ITO/ZnO/P3HT:PCBM/PEDOT:PSS/MoO3/Au/Al/ZnO-d/P3HT:PCBM/PEDOT:PSS/Ag. The separate sub-cells were morphologically and thermally stable up to 160 oC. The high stability of the active layer benefits in the fabrication processes of tandem device. The performance of tandem organic solar cells comes from the sub-cells with an 50 nm thick active layer of P3HT:PCBM, achieving an average power conversion efficiency (PCE) of 2.9% (n=12) with short-circuit current density (JSC) = 4.26 mA/cm2, VOC = 1.10 V, and fill factor (FF) = 0.62. Based on these findings, we propose a new method to improve the performance and stability of tandem organic solar cells.

  • PDF

Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작 (3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography)

  • 조은진;강명길;신형호;윤재호;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Ladder 형과 SCF 형의 구조를 가지는 FBAR 필터의 제작 (Fabrication of Film Bulk Acoustic Wave Filters with Ladder and Stacked Crystal Filter Types)

  • 임문혁;김동현;;윤기완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.630-632
    • /
    • 2003
  • 본 논문에서는 Ladder 형과 SCF 형의 구조를 가지는 FBAR 필터의 제작에 대해 발표한다. 단위공진기의 구조는 W/SiO$_2$, 반사층을 갖는 SMR (Solidly Mounted Resonate.) 구조을 가지며, 21,200$\mu$m$^2$의 공진 면적을 갖는 단위공진기의 $K^2$eff, Q$_{s}$ 그리고 Q$_{p}$는 각각 3.24%, 6,363 그리고 6,749의 값을 보였다. 이와같은 성능을 갖는 단위공진기를 기본으로 제작된 필터의 크기는 Ladder 형이 800$\times$2000($\mu\textrm{m}$$^2$)의 크기를 갖고 SCF 형이 600$\times$500($\mu\textrm{m}$$^2$)을 가진다. 먼저 필터의 기본이 되는 박막형 공진기를 최적화시키고, 이를 바탕으로 Ladder 형과 SCF형의 구조를 가지는 FBAR 필터를 제작하여 성능을 비교하였다.다..

  • PDF

딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크 (Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization)

  • 주희영;고민수;송혁
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.748-757
    • /
    • 2021
  • 본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분(Part)으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하여 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze 데이터셋을 이용하였다. 실험을 통해 시선 추정 오차는 3.9°의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame per second)로 측정되었다.

Interface Study of the Intermediate Connectors in Tandem Organic Devices

  • Tang, Jian-Xin;Fung, Man-Keung;Lee, Chun-Sing;Lee, Shuit-Tong
    • Journal of Information Display
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2010
  • The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.

액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성 (Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF)

  • 정현준;이인환;김호찬;조해용
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성 (Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process)

  • 박재현;최정훈;황광택;김진호
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

Step-Up Asymmetrical Nine Phase Delta-Connected Transformer for HVDC Transmission

  • Ammar, Arafet Ben;Ammar, Faouzi Ben
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1920-1929
    • /
    • 2018
  • In order to provide a source for nine phases suitable for 18-pulse ac to dc power, this paper proposes a new structure for a step-up asymmetrical delta-connected transformer for converting three-phase ac power to nine-phase ac power. The design allows for symmetry between the nine output voltages to improve the power quality of the supply current and to minimize the THD. The results show that this new structure proves the equality between the output voltages with $40^{\circ}-{\alpha}$ and $40^{\circ}+{\alpha}$ phase shifting and produces symmetrical output currents. This result in the elimination of harmonics in the network current and provides a simulated THD that is equal to 5.12 %. An experimental prototype of the step-up asymmetrical delta-autotransformer is developed in the laboratory and the obtained results give a network current with a THD that is equal to 5.35%. Furthermore, a finite element analysis with a 3D magnetic field model is made based on the dimensions of the 4kVA, 400 V laboratory prototype three-phase with three-limb delta-autotransformer with a six-stacked-core in each limb. The magnetic distribution flux, field intensity and magnetic energy are carried out under open-circuit operation or load-loss.

Theophylline 鹽酸鹽의 結晶 및 分子構造 (The Crystal and Molecular Structure of Theophylline Hydrochloride)

  • 구정회;신현소;오선숙
    • 대한화학회지
    • /
    • 제22권2호
    • /
    • pp.86-94
    • /
    • 1978
  • Theophylline 鹽酸鹽의 結晶 및 分子 構造를 3次元的인 X-線 回折 data로부터 Patterson法에 의하여 決定하였고, Block-diagonal least square와 Fourier法으로서座標를 精密化하였다. 이化合物은 a = 14.01, b = 11.49, c = 6.77${\AA}$의 單位格子를 가지는 斜方晶系에 屬하는 結晶 이며 空間群은 $P_{na21}$ 이다. 743개의 觀測된 data에 대한 최종 R값은 12.2%이다. Theophylline 分子內 原子間 距離는 유사化合物에서 얻은 값과 거의 일치한다. 이들 原子는 同一平面을 이루고 있으며 HCl의 鹽素原子는 theophylline의 N(1) 原子와 3.06${\AA}$ 距離의 Cl${\cdot}{\cdot}{\cdot}$N(1), 水素結合을 이루고 있다. 모든 分子 는 대략 (001)과 (002)面上에 배열되어 있고 各分子間은 van derWaals force에 의해 三次元的 構造를 이루고 있다.

  • PDF

Volumetric Capacitance of In-Plane- and Out-of-Plane-Structured Multilayer Graphene Supercapacitors

  • Yoo, Jungjoon;Kim, Yongil;Lee, Chan-Woo;Yoon, Hana;Yoo, Seunghwan;Jeong, Hakgeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.250-256
    • /
    • 2017
  • A graphene electrode with a novel in-plane structure is proposed and successfully adopted for use in supercapacitor applications. The in-plane structure allows electrolyte ions to interact with all the graphene layers in the electrode, thereby maximizing the utilization of the electrochemical surface area. This novel structure contrasts with the conventional out-of-plane stacked structure of such supercapacitors. We herein compare the volumetric capacitances of in-plane- and out-of-plane-structured devices with reduced multi-layer graphene oxide films as electrodes. The in-plane-structured device exhibits a capacitance 2.5 times higher (i.e., $327F\;cm^{-3}$) than that of the out-of-plane-structured device, in addition to an energy density of $11.4mWh\;cm^{-3}$, which is higher than that of lithium-ion thin-film batteries and is the highest among in-plane-structured ultra-small graphene-based supercapacitors reported to date. Therefore, this study demonstrates the potential of in-plane-structured supercapacitors with high volumetric performances as ultra-small energy storage devices.